认知网络中基于三角分解的干扰对齐算法  

Interference alignment algorithm based on trigonometric decomposition in cognitive networks

在线阅读下载全文

作  者:李兆玉[1,2] 马东亚 唐宏 徐栋[1] LI Zhaoyu 1,2 , MA Dongya 1, TANG Hong 1,2 , XU Dong 1(1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 2. Chongqing Key Lab of Mobile Communications Technology, Chongqing 400065, Chin)

机构地区:[1]重庆邮电大学通信与信息工程学院,重庆400065 [2]移动通信技术重庆市重点实验室,重庆400065

出  处:《系统工程与电子技术》2018年第6期1371-1377,共7页Systems Engineering and Electronics

基  金:长江学者和创新团队发展计划(IRT1299);重庆市科委重点实验室专项(cstc2013yykfA40010)资助课题

摘  要:针对多个主用户、多个次用户的认知多输入多输出网络,由次用户单方面消除主次间的干扰,带来次用户性能严重损失的问题,提出一种联合主次用户信道矩阵进行三角分解的干扰对齐算法。首先,根据各个用户的信道质量分别对主用户系统和次用户系统的信道矩阵进行排序;然后,结合主用户网络和次用户网络的信道矩阵进行三角分解;最后,通过最小均方误差算法来验证所提算法的可行性。仿真实验表明,所提算法能有效地提高次用户自由度上限以及次用户网络和主用户网络的系统容量、平均能量效率及抑制干扰的能力。In multiple primary and multiple secondary users' cognitive multiple-input multiple-output networks,the secondary users unilaterally eliminate the interference between primary users and secondary users,and bring about serious loss of secondary users' performance.To solve this problem,ajoint primary users and secondary users channel matrix is proposed for triangular decomposed interference alignment.Firstly,the channel matrix of the primary users system and the secondary users system is sorted according to the user channel quality.Then,the primary and secondary user channel matrix is triangularly decomposed.Finally,the feasibility of the proposed algorithm is verified by the least mean square error algorithm.The simulation results show that the proposed algorithm can effectively improve the upper limit of secondary users' degrees of freedom,and the system capacity,the average energy efficiency and the ability to suppress interference of secondary users network and the primary users network.

关 键 词:认知网络 干扰对齐 三角分解 自由度 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象