Growth modulation of simultaneous epitaxy of ZnO obliquely aligned nanowire arrays and film on r-plane sapphire substrate  被引量:2

Growth modulation of simultaneous epitaxy of ZnO obliquely aligned nanowire arrays and film on r-plane sapphire substrate

在线阅读下载全文

作  者:Yongchun Xiao Yaoyao Tian Shujing sun Chenlong Chen Buguo Wang 

机构地区:[1]Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China [2]College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007, China [3]wSemiconductor Research Center, Wright State University, Dayton, OH45431, USA

出  处:《Nano Research》2018年第7期3864-3876,共13页纳米研究(英文版)

基  金:This work was funded by Hundred Talents Program of Fujian Province and the National Natural Science Foundation of China (No. 61774158), and the Natural Science Foundation of Fujian Province (No. 2018J01110).

摘  要:Simultaneous epitaxial growth of film and nanowire array on a substrate is of both scientific significance and practical importance for nanoscale optoelectronics. Nevertheless, in situ building conducting connection between individually isolated nanowires grown on insulating substrates is still challenging. Herein, we demonstrate a novel and facile strategy for the simultaneous epitaxial growth of nonpolar a-plane ZnO film and obliquely aligned nanowire array on Au-coated r-plane sapphire substrate. The morphology, structure, components, and optical properties of the as-synthesized ZnO nanostructures were investigated using field-emission scanning electron microscopy X-ray diffraction, field-emission transmission electron microscopy energy-dispersive spectroscopy, X-ray photo- electron spectroscopy, and photoluminescence spectroscopy. A cooperative growth mechanism is proposed: Au-catalyzed vapor transport initiates the co-occurrence of nonpolar a-plane and polar c-plane ZnO nuclei, and subsequently, the non-upward directed Au catalyst helps the nonpolar a-plane ZnO nuclei develop into a ZnO conductive film at the bottom and zinc self-catalyzed vapor-liquid-solid growth helps the polar c-plane ZnO nuclei develop simultaneously into obliquely aligned nanowire arrays. The proposed strategy realized in situ synthesis of nanowires with conductive connection and it can benefit the application of ZnO nanowires in optoelectronics.Simultaneous epitaxial growth of film and nanowire array on a substrate is of both scientific significance and practical importance for nanoscale optoelectronics. Nevertheless, in situ building conducting connection between individually isolated nanowires grown on insulating substrates is still challenging. Herein, we demonstrate a novel and facile strategy for the simultaneous epitaxial growth of nonpolar a-plane ZnO film and obliquely aligned nanowire array on Au-coated r-plane sapphire substrate. The morphology, structure, components, and optical properties of the as-synthesized ZnO nanostructures were investigated using field-emission scanning electron microscopy X-ray diffraction, field-emission transmission electron microscopy energy-dispersive spectroscopy, X-ray photo- electron spectroscopy, and photoluminescence spectroscopy. A cooperative growth mechanism is proposed: Au-catalyzed vapor transport initiates the co-occurrence of nonpolar a-plane and polar c-plane ZnO nuclei, and subsequently, the non-upward directed Au catalyst helps the nonpolar a-plane ZnO nuclei develop into a ZnO conductive film at the bottom and zinc self-catalyzed vapor-liquid-solid growth helps the polar c-plane ZnO nuclei develop simultaneously into obliquely aligned nanowire arrays. The proposed strategy realized in situ synthesis of nanowires with conductive connection and it can benefit the application of ZnO nanowires in optoelectronics.

关 键 词:ZNO obliquely aligned nanowire arrays non-polar thin film EPITAXY zinc self-catalyzed 

分 类 号:O484[理学—固体物理] TN304.21[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象