Controlled release of FK506 from micropatterned PLGA films:potential for application in peripheral nerve repair  被引量:2

Controlled release of FK506 from micropatterned PLGA films:potential for application in peripheral nerve repair

在线阅读下载全文

作  者:Brett Davis Susan Wojtalewicz Pratima Labroo Jill Shea Himanshu Sant Bruce Gale Jayant Agarwal 

机构地区:[1]Department of Bioengineering,University of Utah [2]Department of Surgery,University of Utah [3]Department of Mechanical Engineering,University of Utah

出  处:《Neural Regeneration Research》2018年第7期1247-1252,共6页中国神经再生研究(英文版)

摘  要:After decades of research,peripheral nerve injury and repair still frequently results in paralysis,chronic pain and neuropathies leading to severe disability in patients.Current clinically available nerve conduits only provide crude guidance of regenerating axons across nerve gap without additional functionality.FK506(Tacrolimus),an FDA approved immunosuppressant,has been shown to enhance peripheral nerve regeneration but carries harsh side-effects when delivered systemically.The objective of this study was to develop and evaluate a bioresorbable drug delivery system capable of local extended delivery of FK506 that also provides topological guidance cues to guide axon growth via microgrooves.Photolithography was used to create micropatterned poly(lactide-co-glycolic acid)(PLGA) films embedded with FK506.Non-patterned,10/10 μm(ridge/groove width),and 30/30 μm patterned films loaded with 0,1,and 3 μg/cm2 FK506 were manufactured and characterized.In vitro FK506 rate of release testing indicated that the films are capable of an extended(at least 56 days),controlled,and scalable release of FK506.Neurite extension bioactivity assay indicated that FK506 released from the films(concentration of samples tested ranged between 8.46–19.7 ng/m L) maintained its neural bioactivity and promoted neurite extension similar to control FK506 dosages(10 ng/m L FK506).The multi-functional FK506 embedded,micropatterned poly(lactide-co-glycolic acid) films developed in this study have potential to be used in the construction of peripheral nerve repair devices.After decades of research,peripheral nerve injury and repair still frequently results in paralysis,chronic pain and neuropathies leading to severe disability in patients.Current clinically available nerve conduits only provide crude guidance of regenerating axons across nerve gap without additional functionality.FK506(Tacrolimus),an FDA approved immunosuppressant,has been shown to enhance peripheral nerve regeneration but carries harsh side-effects when delivered systemically.The objective of this study was to develop and evaluate a bioresorbable drug delivery system capable of local extended delivery of FK506 that also provides topological guidance cues to guide axon growth via microgrooves.Photolithography was used to create micropatterned poly(lactide-co-glycolic acid)(PLGA) films embedded with FK506.Non-patterned,10/10 μm(ridge/groove width),and 30/30 μm patterned films loaded with 0,1,and 3 μg/cm2 FK506 were manufactured and characterized.In vitro FK506 rate of release testing indicated that the films are capable of an extended(at least 56 days),controlled,and scalable release of FK506.Neurite extension bioactivity assay indicated that FK506 released from the films(concentration of samples tested ranged between 8.46–19.7 ng/m L) maintained its neural bioactivity and promoted neurite extension similar to control FK506 dosages(10 ng/m L FK506).The multi-functional FK506 embedded,micropatterned poly(lactide-co-glycolic acid) films developed in this study have potential to be used in the construction of peripheral nerve repair devices.

关 键 词:nerve regeneration FK506 controlled release micropatterns topological cues PLGA 

分 类 号:R745[医药卫生—神经病学与精神病学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象