基于pso_FSVM的车用动力电池温度预测模型研究  被引量:7

Research on temperature prediction model of vehicle power battery based on pso_FSVM

在线阅读下载全文

作  者:刘荣 童亮[1,2] 许永红 LIU Rong;TONG Liang;XU Yonghong(Sehool of Eleetromeehanieal Engineering, Beijing Information Seienee & Teehnology University, Beijing 100192, China;Beijing Collaborative Innovation Center of Electric Vehicles, Beijing 100192, China)

机构地区:[1]北京信息科技大学机电工程学院,北京100192 [2]北京电动车辆协同创新中心,北京100192

出  处:《现代电子技术》2018年第12期24-27,共4页Modern Electronics Technique

基  金:国家自然科学基金(51275053);电动汽车北京市实验室项目(PXM_2013_014224_000005)~~

摘  要:针对混合动力汽车在复杂工况下动力电池温度测量可靠性下降的问题,提出基于pso_FSVM的车用动力电池温度预测模型,该研究分别采集车辆key_on和key_off两种状态下的动力电池温度数据,采用粒子群优化的快速支持向量机算法,构建了稳定的动力电池温度预测模型。实验结果表明,在车辆key_on和key_off两种状态下,数据集的预测数据与实际测量数据的相关系数分别达到0.810 2和0.797 3,温度预测误差小于2℃,pso_FSVM模型提高了动力电池温度预测的精度和可靠性。In allusion to the problem of the decline of temperature measurement reliability for power battery of the hybrid electric vehicle in complicated working conditions,the temperature data of power battery at two vehicle states of Key_on and Key_off is collected respectively. A stable power battery temperature prediction model is constructed by using the particle swarm optimization based fast support vector machine algorithm. The experimental results show that the correlation coefficient between the prediction data and actual measurement data of data sets reaches 0.810 2 and 0.797 3 respectively at the two vehicle states of Key_on and Key_off,and the temperature prediction error is less than 2 ℃,which indicates that the pso_FSVM model can improve the prediction accuracy and reliability of power battery temperature.

关 键 词:混合动力汽车 动力电池温度 粒子群 快速支持向量机 预测模型 热动力学模型 

分 类 号:TN245-34[电子电信—物理电子学] TP336[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象