云计算网络图书馆的海量信息快速定位方法  被引量:3

Rapid massive information positioning method of cloud computing network library

在线阅读下载全文

作  者:于俊丽 YU Junli(Zhengzhou University of Industrial Teelmology, Xinzheng 451150, China)

机构地区:[1]郑州工业应用技术学院,河南新郑451150

出  处:《现代电子技术》2018年第12期99-101,107,共4页Modern Electronics Technique

基  金:国家自然科学基金(78103116)~~

摘  要:对云计算网络图书馆的信息进行快速定位,在提高其订阅量、缩短订阅时间方面具有重要意义。传统定位方法主要通过对云计算网路图书馆的信息进行预先采集,存储为一个图书信息库,再对其中信息进行定位,信息库更新不及时存在信息定位误差大、耗时长的问题,提出基于ZigBee技术与SVM分类结合的图书馆信息快速定位方法。通过阅读用户信息对图书馆信息进行协同过滤处理,采用SVM分类器对滤波后的信息进行分析,为图书馆海量信息定位提供基础依据,采用ZigBee技术实现对图书馆信息的快读定位。实验结果表明,采用改进定位方法其定位准确率及平均定位准确率均要优于传统定位方法,具有一定的优势。The rapid positioning of the information of the cloud computing network library is of great significance in improving subscription quantities and shortening the subscription time. In the traditional positioning method,the information of the cloud computing network library is collected in advance and stored as a book information database for information positioning,and the information database is not updated in time,resulting in big information positioning errors and long time-consumption.Therefore,a library information rapid positioning method is proposed based on the combination of Zig Bee technology and SVM classification. The collaborative filtering of library information is performed by reading user information. The SVM classifier is used to analyze the filtered information,so as to provide the basic basis for the positioning of massive library information. Zig Bee technology is adopted to achieve fast reading and positioning of library information. The experimental results show that the improved positioning method has superior positioning accuracy rate and average positioning accuracy rate than the traditional positioning method,and has certain advantages.

关 键 词:云计算网络图书馆 海量信息 信息定位 ZIGBEE SVM 协同过滤 

分 类 号:TN711-34[电子电信—电路与系统] G250.73[文化科学—图书馆学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象