检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴冠辰[1] 詹煜[1] 邓捷[1] WU Guanchen;ZHAN Yu;DENG Jie(Department of Information Engineering,Guizhou Jiaotong College,Guiyang 550008,Chin)
机构地区:[1]贵州交通职业技术学院信息工程系,贵阳550008
出 处:《四川理工学院学报(自然科学版)》2018年第4期49-55,共7页Journal of Sichuan University of Science & Engineering(Natural Science Edition)
摘 要:像素级的前景-背景分割通常被当做一个基于条件随机场的能量最小化问题,但是基于的只是局部连接的条件随机场,全连接的条件随机场因为复杂度高而不被采用。通过使用均值场近似技术将邻居节点间的约束转换成低通滤波操作,虽然简化了全连接条件随机场的计算,但也丢失了大量的相关性信息。为了克服这种信息丢失,对临近的像素间的二元约束进行保持,只将空间距离较远的像素间的二元约束转换成低通滤波,并添加了局部的光滑项进行分割边缘约束,然后使用图割算法对最后的能量函数进行优化。实验结果显示,算法由于充分利用了全局约束信息,对具有复杂边缘、细小枝状边缘、凹陷边缘的物体具有较好的分割效果。Pixel-level fore/back-ground segmentation is often treated as the minimization of energy function based on conditional random fields(CRF) , but it is just based on the locally connected conditional random fields, not the fully con nected because of huge complexity of fully connected CRF. The binary constraints between the pixels are converted into lowpass filtering operations by mean-field approximation, while simplifying the computation, but losing a large amount of correla- tion constraint. In this paper, to avoid the loss of correlation constraint, only binary constraints between the pixels at the far distance are considered to transform into the low-pass filtering operations, while the binary constraints between the adjacent pixels are kept. In addition, the local smooth term is added to constrain the edges. Then, the graph cut algorithm is applied to optimize the final Energy function. Experimental results show that the algorithm has good segmentations benefiting from more fully utilized of global binary constraints, especially on the objects with complex edges, dendritic components or depressed edges.
关 键 词:图像分割 条件随机场 核密度估计 图割 平均场近似
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63