检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张治国[1] 李琪[1] 黄栋一 ZHANG Zhi-guo;LI Qi;HUANG Dong-yi(University of Electronic Science and Technology of China,Chengdu Sichuan 611731,China)
机构地区:[1]电子科技大学,四川成都611731
出 处:《计算机仿真》2018年第7期148-153,199,共7页Computer Simulation
基 金:国家自然科学基金项目(60904072;71301018);教育部留学回国人员科研启动基金(M16010701LXHG5008);中央高校基本科研业务费专项资金(ZYGX2015J078)
摘 要:针对外场复杂电磁环境下,传统神经网络方法在建模时极易受噪声影响而陷入局部最优,发生过拟合等问题,提出一种采用采样理论算法的小波神经网络建模方法。通过对小波神经网络和阵列天线辐射场频带特性的分析,证明了提出的改进方法可以有效降低噪声对模型影响,防止神经网络发生过拟合。仿真将改进方法与基于正则化技术的RBF神经网络建模方法进行对比,实验结果表明,改进的建模方法具有更强的抗噪能力,并对噪声的变化具有鲁棒性。Since in the complex electromagnetic environment, the traditional neural network is easy to fall into the local optimum and becomes over fitting that affected by the noise when modeling, a sort of wavelet network modeling method based on sampling theory is proposed in the paper. Through the analysis of the frequency characteristics of wavelet network and array antenna radiation field, it was proved that the improved method proposed can effectively re- duce the influence of noise on the model and prevent the neural network from over fitting. In the simulation, the im- proved method was compared with the method of RBF neural network that based on regularization techniques. The ex- perimental results show that the improved modeling method has stronger anti-noise ability and is more robust to noise.
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.148.147