基于全景图像的玉米果穗流水线考种方法及系统  被引量:6

Assembly line variety test method and system for corn ears based on panoramic surface image

在线阅读下载全文

作  者:杜建军[1,2] 郭新宇 王传宇[1,2] 肖伯祥 Du Jianjun;Guo Xinyu;Wang Chuanyu;Xiao Boxiang(Beijing Research Center for Information Technology in Agriculture,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100097,China;Beijing Key Lab of Digital Plant,Beijing 100097,China)

机构地区:[1]北京市农林科学院北京农业信息技术研究中心,北京100097 [2]数字植物北京重点实验室,北京100097

出  处:《农业工程学报》2018年第13期195-202,共8页Transactions of the Chinese Society of Agricultural Engineering

基  金:国家自然科学基金(31671577);国家重点研发计划(2016YFD0300605-01);北京市农林科学院创新能力建设专项(KJCX20180423);北京市农林科学院数字植物科技创新团队(JNKYT201604)

摘  要:为提高玉米果穗考种效率和精度,该文提出一种基于全景图像的玉米果穗流水线考种方法和系统。利用托辊传送装置实现果穗自动连续推送,基于工业相机自动检测果穗运动状态并实时采集图像,获取覆盖果穗全表面的图像序列;建立果穗运动、摄像机成像、表面拼接关系,从图像序列中抽取果穗中心畸变最小区域拼接出果穗表面全景图像;最后,结合果穗边界检测、籽粒分割和有效性鉴定等技术提取出果穗表面上有效籽粒。试验结果表明,该文方法和系统较好地平衡了玉米果穗考种的效率和精度,图像采集和计算平均效率达15穗/min和4穗/min,穗长和穗行数指标计算精度可达99%和98.89%,可为研发全自动、高通量玉米果穗表型检测装置提供有益借鉴。The phenotypic traits of corn ear are important quantitative data in maize breeding and variety identification. In tradition, breeding workers are employed to deal with lots of corn ears by means of manual measurement and visual count, however this process is seriously labor-consuming and time-costing, and the measured traits are prone to be subjective and incomplete. In recent years, some semi-automatic systems based on machine vision and image analysis have been developed and applied to the maize variety test, however fully automated test system is still a challenge task owing to the strict high-throughput and high-precision requirements in large-scale maize breeding. To balance efficiency and accuracy of variety test for corn ears, in this paper, a high-throughput phenotypic measurement method and system based on panoramic surface image is proposed. Firstly, a novel mechanic system is proposed, which automatically conveys corn ears above a chain-roller structure, while the rolling corn ears are continuously imaged by a fixed industrial camera that is perpendicular to the moving plane of corn ear. In only several seconds, dozens of side images in which corn ears are in different positions can be collected to generate the image dataset of single corn ear. By analyzing the movement state of corn ear, a transformation model which describes the relationship among ear roll, camera imaging and surface position is then built to bridge the image sequence and the panoramic surface image of corn ear. Corn ears in the image sequence are respectively segmented and the center axes are dynamically determined by figuring out the shape and bounding box. This model always extracts the most appropriate sub regions of corn ear from image sequence, and then stitches them to the calculated positions on the panoramic surface image. As a result, the panoramic image of corn ear demonstrates the three-dimensional surface information in a two-dimensional image, and thus provides more intuitive and complete way for phenotyping calculatio

关 键 词:图像处理 机器视觉 图像分割 玉米果穗 表型性状 图像拼接 全景图像 考种 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] S333.3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象