检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘翠翠[1] 孙伟[2] Liu Cuicui;Sun Wei(College of Information Engineering,Changsha Medical University,Changsha 410219,China;Institute for Network Security,Information Engineering University,Zhengzhou 450000,China)
机构地区:[1]长沙医学院信息工程学院,长沙410219 [2]信息工程大学网络空间安全学院,郑州450000
出 处:《计算机应用研究》2018年第8期2308-2310,2327,共4页Application Research of Computers
基 金:国家自然科学基金资助项目(F010103)
摘 要:通常在蛋白质网络中挖掘稠密子图或模块来识别其中的蛋白质复合物,限制了其应用范围和识别的准确性。针对该问题,提出了一种基于加权网络和局部适应度的蛋白质复合物识别算法。该算法综合稠密子图的密度指标和模块性定义了新的局部适应度函数,并基于边聚集系数构建加权的蛋白质网络,根据权值选择边,在加权蛋白质网络中将种子边不断聚类扩展,挖掘综合适应度最大的子图,从而识别出蛋白质复合物。在多个真实蛋白质网络中的实验表明,该算法能够有效提升蛋白质复合物识别的准确性。Usually, the ways about mining dense subgraph or module would limit their scope of application and recognition accuracy on protein complexes identification. To solve this problem, this paper proposed a novel protein complex recognition algorithm based on weighted network and local fitness. By integrating density of subgraph and modularity, it defined a new local fitness function, and used edge clustering coefficient to construct the weighted protein network, selected some seed edges according to their weights, then extended the clustering around the seed edge until gaining a biggest protein subgraph with maximum comprehensive fitness. Experiments in yeast protein networks show that, this algorithm can effectively improve the accuracy on protein complexes identification.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145