检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:税文兵[1] 杨汉卿 何民[1] SHUI Wenbing;YANG Hanqing;HE Min(School of Transportation Engineering,Kunming University of Science & Technology,Kunming 650500,Chin)
机构地区:[1]昆明理工大学交通工程学院,云南昆明650500
出 处:《物流科技》2018年第8期32-37,共6页Logistics Sci-Tech
基 金:国家自然科学基金项目(71462024)
摘 要:针对订单农业供应链中农户实际供应与签约量不一致的问题,建立农产品供应不确定下最佳签约量决策模型。模型以农业企业的总期望成本最小为目标,在农户生产能力范围限制下同时对农户选择和签约量进行决策。考虑的成本项包括农户固定签约成本、生产服务成本、采购成本、缺货成本、过多供应处理成本。设计了求解模型的遗传算法和粒子群优化算法,通过不同规模仿真算例发现:粒子群优化算法整体上更适合求解所建立模型。参数分析表明:为了减少供应不确定风险带来的损失,总签约量应大于实际需求量;总签约量和最小期望成本随农户实际供应不稳定程度的增加而增大,随实际供应数量水平的提高而降低。Aiming at the problem that supply of farmer is not consistent with the quantities in agreements in farming supply chain, a decision model for optimal order quantity- is developed with uncertainly supply. The goal of the model is minimization of total expected cost of agribusiness, while the selection of farmers and order quantities are decided simuhaneously with the con- straints of farmers' capacity-. The cost types of the model include fixed signing cost, cultivating service cost, sourcing cost, short cost, and handling cost of oversupply. The genetic algorithm and particle swarm optimization algorithm is designed respectively to solve the model. The resuhs computed from different numerical exmnples showed that PSO algorithm is more suitable to solve the model as a whole. The total contracted quantity should be larger than the actual demand in order to reduce the loss results of unsteady- supply risk. Moreover, the total contracted quantity- and minimized expected cost increase with the raise of unsteady- sup- ply extent, and reduce with the raise of actual quantities of supply.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.29.244