检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:富月 杜琼 FU Yue;DU Qiong(State Key Laboratory of Synthetical Automation for ProcessIndustries,Northeastern University,Shenyang 110819)
机构地区:[1]东北大学流程工业综合自动化国家重点实验室,沈阳110819
出 处:《自动化学报》2018年第7期1250-1259,共10页Acta Automatica Sinica
基 金:国家自然科学基金(61573090;61525302);高校基本科研业务费项目(N160801001)资助~~
摘 要:针对一类动态未知的工业运行过程,提出一种基于神经网络补偿和多模型切换的自适应控制方法.为充分考虑底层跟踪误差对整个运行过程优化和控制的影响,将底层极点配置控制系统和上层运行层动态模型相结合,作为运行过程动态模型.针对参数未知的运行过程动态模型,设计由线性鲁棒自适应控制器、基于神经网络补偿的非线性自适应控制器以及切换机制组成的多模型自适应控制算法.采用带死区的递推最小二乘算法在线辨识控制器参数,克服了投影算法收敛速度慢、对参数初值灵敏的局限.理论分析和仿真实验结果表明了所提方法的有效性.In this paper, for a class of industrial operational processes, an adaptive control method based on neural networks and multiple models is proposed. In order to fully consider the influence of tracking errors in bottom closed-loop system on the performance of the operational process, the bottom pole-assignment control system and the dynamic model in the upper layer are combined as generalized dynamic model of the whole operational process. For the dynamic model with unknown parameters, a multi-model adaptive control method, composed of a linear robust adaptive controller, a neural-network-based nonlinear adaptive controller and a switching mechanism, is designed. Since the recursive least square algorithm has a faster convergence rate and less sensitivity to the initial values of parameters than the projection algorithm, the recursive least square algorithm with deadzone is used to identify the unknown controller parameters.Results of theoretic analysis and simulation experiments demonstrate the effectiveness of the proposed method.
关 键 词:工业运行过程 参数未知 多模型自适应控制 递推最小二乘算法
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229