检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵毅力[1,2] 徐丹 Zhao Yili;Xu Dan(School of Information,Yunnan University,Kunming 650091;School of Big Data and Intelligent Engineering,Southwest Forestry University,Kunming 650224)
机构地区:[1]云南大学信息学院,昆明650091 [2]西南林业大学大数据与智能工程学院,昆明650224
出 处:《计算机辅助设计与图形学学报》2018年第8期1522-1529,共8页Journal of Computer-Aided Design & Computer Graphics
基 金:国家自然科学基金(61662072;61540062);云南省教育厅基金(2015Y285;2016CYH03);云南省应用基础研究项目(2014FA021)
摘 要:由于子类别的高度相似性引起的类间微小差异,以及姿态、尺度和旋转方面的类内变化,使得细粒度图像识别成为一个具有挑战性的计算机视觉问题.为了对鸟类图像进行细粒度识别,提出一种联合语义部件的深度卷积神经网络模型.该模型由2个子网络组成:一个是语义部件检测子网,使用深度残差网络对鸟类图像语义部件进行精确定位;另一个是分类子网,使用三路深度残差网络对检测子网检测到的语义部件进行联合分类.收集了一个新的鸟类图像数据集YUB-200-2017,用于鸟类图像细粒度识别实验.结果表明,在YUB-200-2017和CUB-200-2011数据集上,文中方法具有较高的语义部件检测精度和识别准确率.Fine-grained image recognition is a challenging computer vision problem, due to small inter-classvariations caused by highly similar subordinate categories, and the large intra-class variations in poses,scales and rotations. In order to perform fine-grained recognition on bird images, this paper proposes a deepconvolution neural networks model collaborated with semantic parts detection. The model consists of twomodules, one module is a parts detector network, and another module is a three-stream classification networkbased on deep residual network. In the meantime, a new bird images dataset was collected and labeled to facilitythe research of fine-grained bird images recognition. Experiment results on YUB-200-2017 andCUB-200-2011 illustrate the proposed model has higher part detection and image classification accuracycomparing with state-of-the-arts fine-grained bird image recognition approaches.
关 键 词:细粒度图像识别 语义部件检测 深度学习 卷积神经网络
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28