基于IPSO__LS-SVM的国防科研项目概算价格估算研究  

Research on National Defense Project Development-cost Evaluation Based on IPSO__LS-SVM

在线阅读下载全文

作  者:林波 Lin Bo(College of Unite Service,National Defense University,Beijing 100858,China)

机构地区:[1]国防大学联合勤务学院,北京100858

出  处:《兵工自动化》2018年第5期55-59,共5页Ordnance Industry Automation

摘  要:为解决国内在估算方法选择和模型性能优化上存在的问题,利用改进的粒子群算法优化最小二乘支持向量机(least squares support vector machine,LS-SVM)的参数选择方法,对国防科研项目概算价格估算进行研究。依据最小二乘支持向量机原理,通过优化其参数选择方法,建立了IPSO__LS-SVM概算价格估算模型,并对其进行模型训练和结果验证。结果表明:IPSO__LS-SVM方法估算精度更高,参数寻优速度更快,其估算模型具有有效性和优越性。To solve the existing problems of forecasting method selection and model performance optimization in China, a method of optimizing the parameters selection for the least squares support vector machine(LS-SVM) with Improved Particle Swarm Optimization(IPSO) is proposed to carry out research on national defense project development-cost evaluation. Based on the principle of least square support vector machine, the estimation model of IPSO__LS-SVM is established by optimizing its parameter selection method, and the model training and result verification are carried out. The results show that the IPSO__LS-SVM method has higher precision and faster parameter optimization, and its estimation model is effective and advantageous.

关 键 词:概算价格 改进粒子群算法 最小二乘支持向量机 估算 

分 类 号:TJ02[兵器科学与技术—兵器发射理论与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象