检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵洁 ZHAO Jie(College of Mathematics and Computer,College of Foreign Trade and Business,Chongqing Normal University,Chongqing 401520,China)
机构地区:[1]重庆师范大学涉外商贸学院数学与计算机学院,重庆401520
出 处:《重庆师范大学学报(自然科学版)》2018年第4期21-24,共4页Journal of Chongqing Normal University:Natural Science
基 金:重庆师范大学涉外商贸学院"中青年骨干教师培养计划"
摘 要:【目的】研究一类非可微多目标规划问题改进的Mond-Weir型对偶。【方法】分析Mond-Weir型对偶问题基础上,给出该问题的一类改进的Mond-Weir型对偶模型,利用G-不变凸性证明原问题与对偶问题之间的对偶结果。【结果】在适当条件下,得出该问题与对偶问题的弱对偶定理、强对偶定理和非极大逆对偶定理并进行证明。【结论】改进的MondWeir型对偶结果可以在更弱的条件下得以证明。[Purposes]The improved Mond-Weir type dual problem of a class of nondifferentiable multiobjective programs were studied.[Methods]The improved Mond-Weir type dual problem is formulated.G-invex assumption were used to establish duality theorems relating the problem and the dual problems which based on the analysis of Mond-Weir type dual problem.[Findings]Weak duality theorems,strong duality theorem and no-maximal converse duality theorem were established under suitable conditions.[Conclusions]The improved Mond-Weir duality results were proved under weaker assumptions.
关 键 词:不可微规划 多目标规划 改进的Mond-Weir型对偶 G-不变凸
分 类 号:O221.6[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.190.159.222