检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郦于杰 梁忠民[1] 唐甜甜[1] LI Yujie;LIANG Zhongmin;TANG Tiantian(Hohai University,College of Hydrology and Water Resources,Nanjing 210098,China)
出 处:《南水北调与水利科技》2018年第3期45-50,共6页South-to-North Water Transfers and Water Science & Technology
基 金:国家科技支撑计划课题(2013BAB06B01)~~
摘 要:根据汉江流域皇庄站1981-2008年逐月径流量与1980-2007年逐月74项环流指数、北太平洋海温场、500hPa高度场的相关关系,利用逐步回归挑选预报因子,构建基于遗传算法的支持向量回归机模型(GA-SVR),并对2009-2013年逐月径流量进行预报;结果表明,径流预报精度较高,汛期平均相对误差在30%以内,非汛期、年总量平均相对误差在20%以内,均优于随机森林和多元线性回归模型。将GA-SVR模型的预报结果作为概率预报的基础,采用贝叶斯理论中的水文不确定性处理器(HUP)对预报的可靠度进行分析;结果表明,HUP不仅可以提供精度更高的定值预报,还能以置信区间的方式量化预报的可靠度,提供更为丰富的预报信息。In accordance with the Huangzhuang Station′s monthly runoff from 1981 to 2008 and the correlativity from 1980 to2007 among the 74 circulation indexes of each month,the monthly north pacific sea surface temperature field,and the 500 hPa geopotential height,we used the stepwise regression method to select the forecast factors and built a GA-SVR Model(Genetic Algorithm Support Vector Regression Model)on the basis of GA(Genetic Algorithm),in order to forecast the monthly runoff from 2009 to 2013.The results showed that the accuracy of the runoff forecast was relatively high:the average relative error in flood season was within 25%;the yearly runoff amount was within 20%in non-flood season.It was superior to Random Forest and Multiple Regression Model.With the forecast results of the GA-SVR Model as the basis of the probability forecast,we used the Hydrologic Uncertainty Processor(HUP)of the Bayesian Theory to analyze the forecast reliability.The outcome indicated that HUP could not only give a constant-value forecast with relatively high accuracy,but also quantify the forecast reliability in the form of a confidence interval to provide more forecast information.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222