检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁嘉琪[1] 卜旭辉[1] 刘建[1] 钱伟[1] LIANG Jia-qi;BU Xu-huiy;LIU Jian;QIAN Wei(School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo Henan 454000,Chin)
机构地区:[1]河南理工大学电气工程与自动化学院,河南焦作454000
出 处:《控制理论与应用》2018年第6期786-794,共9页Control Theory & Applications
基 金:国家自然科学基金项目(61203065;61573129);河南省高校科技创新人才支持计划(16HASTIT046);河南省高等学校青年骨干教师计划项目(2014GGJS–041);浙江省自然科学基金(LQ16F030009);河南省创新型科技人才队伍建设工程(CXTD2016054)资助~~
摘 要:针对带有输出饱和的多智能体系统有限时间趋同跟踪控制问题,提出了一种分布式迭代学习控制算法.首先假设多智能体系统具有固定拓扑结构,且仅有部分智能体可获取到期望轨迹信息.基于输出约束条件构造一致性跟踪误差,在此基础上设计了P型迭代学习控制率.然后采用压缩映射方法给出了一个算法收敛的充分条件,并在理论上证明了跟踪误差的收敛性.最后,将理论结果推广至具有随机切换拓扑结构的多智能体系统中.仿真结果验证了所提出算法的有效性.In this paper, a distributed iterative learning control algorithm is proposed to the consensus tracking control problem of multi-agent systems with output saturation. First, it is assumed that the considered multi-agent system has a fixed communication topology and only a part of agents can obtain the desired trajectory information. The P-type iterative learning control law is developed from the consensus tracking error that constructed by the constraint output. Then, a sufficient condition of the algorithm is given by using the approach of contraction mapping, and the theoretical convergence analysis of the tracking error is also provided. Finally, the theoretical results are extended into multi-agent systems with randomly switching topology. Simulation results further validate the effectiveness of the proposed algorithm.
关 键 词:多智能体系统(MAS) 迭代学习控制(ILC) 一致性 输出饱和 分布式算法 随机切换拓扑
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229