检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄诚[1] 张冰雪 赵逢禹[1] HUANG Cheng;ZHANG Bing-xue;ZHAO Feng-yu(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and technology,Shanghai 200093 China)
机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093
出 处:《软件》2018年第4期97-102,共6页Software
摘 要:每个学习者在学习过程中都有自己的学习风格。现有的利用学习行为自动识别学习风格的方法所采用的行为数据单一,未能充分体现Felder–Silverman理论中与学习风格相对应的学习行为的定义,且大部分学习风格识别模型都只采用单一算法对行为特征数据进行处理,识别效率不高。针对这两个问题提出了一种利用每个风格维度最少4种在线行为特征数据并结合C4.5决策树算法和隐马尔可夫算法识别学习风格的方法,并比较每种算法对4种不同学习风格维度识别的优劣程度。通过对Moodle进行二次开发获取数据进行实验,实验验证了该方法的有效性。Each learner has his own learning style in the learning process. The existing single behavioral data used in the method of learning style recognition automatically by learning behavior can not fully reflect the definition of learning behavior corresponding to learning style in Felder-Silverman theory, and most of the learning style recognition models use only a single algorithm to processes the behavioral characteristic data and has low recognition efficiency. Aiming at these two problems, a method of using at least 4 kinds of online behavioral data for each style dimension and combining C4.5 decision tree algorithm with Hidden Markov algorithm to identify learning styles and compares the advantages and disadvantages of each algorithm for recognizing the dimensions of four different learning styles. Through the secondary development of Moodle data acquisition experiment, the experimental verification of the effectiveness of the method.
关 键 词:学习风格模型 行为特征 C4.5决策树 隐马尔可夫模型
分 类 号:TP391.7[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222