检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:段元波[1] 高茂庭[1] DUAN Yuanbo,GAO Maoting(College of Information Engineering,Shanghai Maritime University,Shanghai 201306,Chin)
出 处:《计算机工程》2018年第6期13-17,23,共6页Computer Engineering
基 金:国家自然科学基金(61202022)
摘 要:针对用户聚类时部分近邻被遗漏和近邻用户选取依据单一的问题,通过对项目评分和类型评分进行聚类,提出一种新的推荐算法。结合用户对项目的评分记录生成用户-项目评分矩阵和用户-项目类型评分矩阵,基于此对用户进行模糊C均值聚类,同时改进距离度量方法,根据聚类生成的隶属度矩阵在隶属度高的簇中选取对应最近邻,并通过加权生成预测评分,最终产生推荐。在Movie Lens数据集上的对比结果表明,该算法能够真实地反映用户评分,有效提高推荐系统的预测准确性。To solve the problems that some similar users will be missed and the basis for selecting nearest neighbors is single while user clustering,a recommendation algorithm based on clusterings of item rating and type rating is proposed.The user-item rating matrix and the user-item type rating matrix according to user’s rating records are firstly generated.The fuzzy C-means clustering is carried out by using the above two matrices and the improved the distance measurement method.Then,the nearest neighbor is selected according to the membership degree matrix generated by the clustering.Finally,the prediction rating is generated by the parameter weighting.Experimental results on MovieLens dataset show that the proposed algorithm can reflect the user’s rating accurately and improve the accuracy of the recommendation system effectively.
关 键 词:协同过滤 模糊C均值聚类 隶属度 推荐算法 项目评分 类型评分
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30