检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕良[1] 金绍华[2,3] 边刚 崔杨[2,3] 夏伟 LU Liang;JIN Shaohua;BIAN Gang;CUI Yang;XIA Wei(92899 Troops,Ningbo 315300,China;Department of Hydrography and Cartography,Dalian Naval Academy,Dalian 116018,China;Key Laboratory of Hydrography and Cartography of PLA,Dalian 116018,China)
机构地区:[1]92899部队 [2]海军大连舰艇学院海洋测绘系 [3]海洋测绘工程军队重点实验室
出 处:《海洋测绘》2018年第3期64-68,共5页Hydrographic Surveying and Charting
基 金:国家自然科学基金(41576105;41374108;41476087)
摘 要:针对海底采样点较少时,监督学习训练分类模型困难的问题,研究无监督学习的K-均值聚类分析算法在多波束海底底质分类中的应用。在探讨K-均值聚类分析算法原理的基础上,构建海底底质分类器,针对分类器需预先输入分类结果种类(K值)这一问题,提出了基于底质采样点和分类效果连续性为原则的K值确定方法。实验结果表明:基于K-均值聚类分析算法的海底底质分类器能较好的实现海底底质类型的自动划分,适用于海量多波束底质特征参数的分类。For lack of bottom sampling points,the classification model with supervised learning training is difficult. Therefore the K-means Clustering Analysis Algorithm which is unsupervised learning is studied in multibeam seafloor classification.Based on the theory of the K-means Clustering Analysis Algorithm,the seafloor classifier is built.Due to the classification results must be input in the classifier in advance,the K-value methods are discussed,which is based on the role of the continuity of the bottom sampling points and the classification quality.The experiment result shows that the types of the bottom sediments can be classified automatically with the classifier which is based on the K-means Clustering Analysis Algorithm,and the method can be applied in the classification of the mass multibeam bottom feature parameters.
关 键 词:多波束测量 海底底质分类 特征参数 K-均值算法 聚类分析
分 类 号:P229.3[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3