检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴莹 罗明[1] WU Ying;LUO Ming(School of Electronic Engineering,Xidian University,Xi’an,Shaanxi 710071,China)
机构地区:[1]西安电子科技大学电子工程学院,陕西西安710071
出 处:《信号处理》2018年第6期661-667,共7页Journal of Signal Processing
基 金:西安电子科技大学基本科研业务费资助项目(JB160221)
摘 要:为解决在雷达信号分类识别过程中训练样本较少的问题,本文提出了联合主动学习和半监督学习,并对其伪标记样本进行迭代验证改进的分类算法。针对复杂的电磁环境下雷达信号识别率低的问题,本文将径向高斯核时频分析应用于雷达信号,并对时频分布进行奇异值分解,提取出奇异向量作为雷达信号识别的特征参数。针对传统的半监督主动学习算法的不足,利用改进的半监督主动学习算法构建分类器,该算法通过对伪标记样本进行迭代验证来提高伪标记信息的准确性,从而改善了最终的分类性能,实现了在可获取的有标签样本数量较少的条件下对雷达信号的高概率识别。仿真结果表明,本文提出的特征识别方法可以获得较高的识别率。In the process of radar signal recognition,fewer training samples is a common and challenging problem. A novel algorithm named improved semi-supervised active learning is proposed for signal classification,which is based on pseudolabels verification procedure. For the problem of low radar signal recognition in complex electromagnetic environment,the time-frequency analysis of radially Gaussian kernel is applied to radar signals. Through singular value decomposition of time-frequency distribution,it extracts its singular values as feature parameters for radar signal recognition. In order to overcome the shortcomings of the traditional semi-supervised active learning algorithm,a classifier is constructed using an improved semi-supervised active learning algorithm. The proposed algorithm enables a collaborative labeling procedure by both human experts and classifiers to acquire more confidently labeled samples to improve the final classification performance and realize the high probability of radar signal recognition when the number of available labeled samples is small. Simulation results show that the proposed feature recognition method can achieve higher radar signal recognition at low SNR.
关 键 词:径向高斯核时频分布 奇异值分解 特征提取 半监督学习 主动学习
分 类 号:TN957.51[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.244.88