基于多目标差分进化算法的高炉煤气系统调度  被引量:4

Scheduling for blast furnace gas system based on multi-objective differential evolution algorithm

在线阅读下载全文

作  者:徐双双 赵珺[1] 王伟[1] XU Shuangshuang;ZHAO Jun;WANG Wei(School of Control Science and Engineering,Dalian University of Technology,Dalian 116023,Liaoning,China)

机构地区:[1]大连理工大学控制科学与工程学院,辽宁大连116023

出  处:《化工进展》2018年第7期2510-2515,共6页Chemical Industry and Engineering Progress

基  金:国家自然科学基金(61473056;61533005;61522304;U1560102);国家科技支撑计划(2015BAF22B01)项目

摘  要:针对钢铁工业中高炉煤气(blast furnace gas,BFG)系统的调度问题,提出了一种基于动态贝叶斯(dynamic Bayesian network,DBN)和改进的多目标差分进化(improved multi-objective differential evolution,IMODE)算法的BFG系统调度方法。考虑到BFG系统的动态特性和时间预测模型的输出不确定性,采用基于因果关系的DBN算法对BFG系统的煤气柜建立模型,并以煤气柜快速达到期望值且具有较大的调节余量为优化目标。在优化调度时,将粒子拥挤距离引入到多目标差分进化算法的搜索机制中,从而提高模型的搜索精度。此外,针对单个用户调整不能使煤气柜安全运行的情况,同时考虑到不同消耗用户调整能力的差异,提出了多用户调整方案。为了验证所提算法的有效性,采用国内某钢铁企业BFG系统生产数据进行实验,结果表明该方法相比其他的方法在BFG系统调度调整中具有更好的效果。Considering that the scheduling of blast furnace gas(BFG)system is crucial for energy saving in iron and steel industry,this study proposes a novel scheduling method for BFG system based on dynamic Bayesian network(DBN)and improved multi-objective differential evolution(IMODE)algorithm. On account of the dynamic characteristic of the BFG system and the output uncertainty of time prediction model,this study models the BFG system with the causality based DBN method. Simultaneously,the optimization target is that the gas cabinet reaches the desired value fast with a large margin for adjustment. When optimizing the scheduling schemes,the crowding distance of the particles is involved into the searching mechanism of IMODE algorithm to improve the searching precision. Furthermore,in view of the fact that the gas tank cannot run securely by adjusting a single user and the differences of adjustment ability of different users,a multi-user scheduling scheme method is proposed. In order to verify the effectiveness of the proposed method,experiments are carried out with the BFG system production data of a domestic steel enterprise. The results show that the proposed method is more effective than others for the scheduling of the BFG system.

关 键 词:高炉煤气 调度 动态贝叶斯网络 多目标差分进化 

分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象