检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜兆宏 夏培淞 邱飞岳[1] 朱会杰 DU Zhao-hong;XIA Pei-song;QIU Fei-yue;ZHU Hui-jie(College of Education Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China)
机构地区:[1]浙江工业大学教育科学与技术学院,杭州310023
出 处:《小型微型计算机系统》2018年第8期1646-1651,共6页Journal of Chinese Computer Systems
基 金:国家自然科学基金项目(61472366;61379077)资助
摘 要:水波优化算法(Water Wave Optimization,WWO)是受浅水波理论启发而提出的一种新兴群体智能算法,其具有控制参数少、种群规模小、实现简单、计算开销小等优点,但依然存在局部搜索能力不强、收敛速度较慢等缺陷.首先,通过对水波优化算法在执行全局和局部搜索阶段控制参数变化进行分析的基础上,提出了一种自适应参数调整策略改进的水波优化算法;最后,对改进的算法和包括原WWO、SCA、DA等在内的四种算法在10个标准测试函数上的寻优性能进行试验.结果表明,所提出的策略有效提升了水波优化算法的整体性能,无论在收敛精度还是收敛速度上,改进的水波算法相较于其他三种算法优化结果更加稳定.Water Wave Optimization ( WWO } is a new kind of swarm intelligence algorithm inspired by the shallow water wave theo- ry- Less control parameters, a small population size,easy implementation and small computational overheads,it also has disadvantages: less strong local search ability,slow convergence speed and so on. First,through the waves in the execution of global and local search optimization algorithm for requirements based on the analysis of the control parameters, improved water wave optimization algorithm used the adaptive adjustment strategy to adjust the control parameters; Finally, for the improved algorithm and including original WWO.SCA.DA, these four kinds of algorithms on 10 standard test functions optimization performance simulation experiment. Results show that the proposed strategy to effectively enhance the water waves to optimize the overall performance of the algorithm, in both the convergence accuracy and convergence speed, improved water wave algorithm, compared with other three kinds of algorithm opti- mization results are more stable.
关 键 词:水波优化算法 自适应参数调整 对数递减策略 函数优化
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62