检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张国珍[1] ZHANG GUOZHEN(School of Mathematical Sciences,Shanxi University,Taiyuan 030006,Chin)
机构地区:[1]山西大学数学科学学院
出 处:《应用数学学报》2018年第4期473-496,共24页Acta Mathematicae Applicatae Sinica
基 金:国家自然科学基金(11401352,11401354,11501341)资助项目
摘 要:在文献 Ji-Ming Guo, Shang-Wang Tan. A conjecture on the second largest eigenvalue of a tree with perfect matchings. Linear Algebra and its Applications, 2002, 347(1-3): 9-15和Ji-Ming Guo, Shang-Wang Tan. A note on the second largest eigenvalue of a tree with perfect matchings. Linear Algebra and Its Applications, 2004, 380:125-134中,Guo和Tan给出了有2k个顶点且有完美匹配的树的第二大特征值的上界,这个上界与顶点数有关,并且刻画了第二大特征值达到该上界的树.本文给出了有2k个顶点的树的第二大特征值的上界,这个上界与顶点数和最大匹配的基数有关,并且刻画了第二大特征值达到该上界的树.Guo and Tan in [Ji-Ming Guo, Shang-Wang Tan, A conjecture on the second largest eigenvalue of a tree with perfect matchings, Linear Algebra and its Applications 347 (1-3) (2002) 9-15] and [Ji-Ming Guo, Shang-Wang Tan, A note on the second largest eigenvalue of a tree with perfect matchings, Linear Algebra and its Applications 880 (2004) 125-134] presented the upper bounds for the second largest eigenvalue of a tree on 2k vertices with perfect matchings in terms of the number of vertices and characterized the trees whose second largest eigenvalues attain the upper bounds. In this paper, we present the upper bounds for the second largest eigenvalue of a tree on 2k vertices in terms of the number of vertices and the size of maximum matchings and characterize the trees whose second largest eigenvalues attain the upper bounds.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117