检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李佳 马淑芳[1] LI Jia;MA Shufang(Department of Mathematics,Northeast Forestry University,Harbin 150040,China)
出 处:《黑龙江大学自然科学学报》2018年第3期285-294,共10页Journal of Natural Science of Heilongjiang University
基 金:Supported by the Fundamental Research Funds for Central University(DL11BB09)
摘 要:利用分段欧拉法建立一类具有不同时刻脉冲控制和Holling Ⅱ功能反应的离散捕食-被捕食模型,并对该模型进行分析。借助于Floquest定理,证明当周期T小于某个临界值时,害虫灭绝周期解的存在性及全局渐近稳定性。当周期T大于某个临界值时,离散系统的解是永存的。数值算例验证了所得结论的正确性。A discrete Holling type Ⅱ predator-prey model with impulsive control strategy at different fixed times is proposed by using the piecewise Euler method,and some analysis is further given.By the help of Floquets theorem,the existence and globally asymptotic stability of pest-eradication periodic solution are investigated when the impulsive period is less than some critical value.It is shown that the solution of discrete system is permanence if the impulsive period is larger than some critical value.Some numerical experiments are offered to justify the correctness of theoretical results.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222