基于浮动车数据的新能源汽车充电站选址布局研究——以广州中心城区为例  被引量:10

The Study about Charging Station Locating of the New Energy Vehicle A based Floating Car Data:Take the Guangzhou Central Area as an Example

在线阅读下载全文

作  者:胡培婷 曹小曙[1] 秦红旭 容福炬 HU Peiting;CAO Xiaoshu;QIN Hongxu;RONG Fuju

机构地区:[1]中山大学地理科学与规划学院 [2]厦门大学王亚南经济研究院 [3]华南理工大学数学学院

出  处:《现代城市研究》2018年第8期28-36,共9页Modern Urban Research

基  金:国家自然科学基金(41171139)

摘  要:新能源汽车推广是未来减少温室气体排放、替代传统能源的手段,而充电基础设施能否满足充电时空需求对成功推广至关重要。本文以广州市中心城区为案例对充电需求进行时空特征分析,并在此基础上提出充电时空需求的最大覆盖模型,探求在一定充电站数量下的充电站最佳选址布局区域。结果表明,广州市中心城区出租车出行距离较短,行程间时长多集中在0~20min内;充电需求高度集聚,其分布呈现"80/20"定律,工作日与非工作日间差异不明显。分析预选充电站5、10和15min内的服务覆盖区,广州市中心城区应选择紧凑型的充电站布局(w_1=0.5)。Exploiting New Energy Vehicles (EVs) is an important method to cut down the consumption of traditional energy resources, thereby reducing the emission of greenhouse gas. However, it is vital whether charging station could fit the need of the space-time demand from more and more popular EVs in the incremental promoting campaign successfully. This paper studies the space-time demand characters of charging stations in Guangzhou central area and proposes a maximum covering model. The result indicates that the general travel distances of taxis in Guangzhou central area are quite short, and most of the carrying time distribute within 0-20 minutes. We can see that the demand behaves agglomerate apparently and fits Pareto Rule quite well in this area. What's more, the difference of travel demand for the taxis in weekend and non-weekend is not significant. Based on the research, we propose to apply a compact charging station locating model (w1=0.5) when constructing specific number of stations in Guangzhou central area. At last, we analyzed the service covering scope for preselection stations which cars needed to charge could access in 5, 10 and 15 minutes' driving.

关 键 词:新能源汽车 充电站 选址 浮动车数据 广州中心城区 

分 类 号:U491[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象