机构地区:[1]Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Land and Resources,Qingdao Institute of Marine Geology,China Geological Survey [2]Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology [3]State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences [4]State Key Laboratory of Marine Geology, Tongji University
出 处:《Journal of Ocean University of China》2018年第4期823-834,共12页中国海洋大学学报(英文版)
基 金:supported by funds from the National Natural Science Foundation of China(Nos.41576058,41476052 and 41306066);the Geological Survey Project(No.DD20189836);the Open Foundation of the State Key Laboratory of Loess and Quaternary Geology(No.SKLLQG1707)
摘 要:The East Asian monsoon system influences the sedimentation and transport of organic matter in East Asian marginal seas that is derived from both terrestrial and marine sources. In this study, we determined organic carbon(OC) isotope values, concentrations of marine biomarkers, and levels of OC and total nitrogen(TN) in core YSC-1 from the central South Yellow Sea(SYS). Our objectives were to trace the sources of OC and variations in palaeoproductivity since the middle Holocene, and their relationships with the East Asian monsoon system. The relative contributions of terrestrial versus marine organic matter in core sediments were estimated using a two-end-member mixing model of OC isotopes. Results show that marine organic matter has been the main sediment constituent since the middle Holocene. The variation of terrestrial organic carbon concentration(OCter) is similar to the EASM history. However, the variation of marine organic carbon concentration(OCmar) is opposite to that of the EASM curve, suggesting OCmar is distinctly influenced by terrestrial material input. Inputs of terrestrial nutrients into the SYS occur in the form of fluvial and aeolian dust, while concentrations of nutrients in surface water are derived mainly from bottom water via the Yellow Sea circulation system, which is controlled by the East Asian winter monsoon(EAWM). Variations in palaeoproductivity represented by marine organic matter and biomarker records are, in general, consistent with the recent EAWM intensity studies, thus, compared with EASM, EAWM may play the main role to control the marine productivity variations in the SYS.The East Asian monsoon system influences the sedimentation and transport of organic matter in East Asian marginal seas that is derived from both terrestrial and marine sources. In this study, we determined organic carbon(OC) isotope values, concentrations of marine biomarkers, and levels of OC and total nitrogen(TN) in core YSC-1 from the central South Yellow Sea(SYS). Our objectives were to trace the sources of OC and variations in palaeoproductivity since the middle Holocene, and their relationships with the East Asian monsoon system. The relative contributions of terrestrial versus marine organic matter in core sediments were estimated using a two-end-member mixing model of OC isotopes. Results show that marine organic matter has been the main sediment constituent since the middle Holocene. The variation of terrestrial organic carbon concentration(OCter) is similar to the EASM history. However, the variation of marine organic carbon concentration(OCmar) is opposite to that of the EASM curve, suggesting OCmar is distinctly influenced by terrestrial material input. Inputs of terrestrial nutrients into the SYS occur in the form of fluvial and aeolian dust, while concentrations of nutrients in surface water are derived mainly from bottom water via the Yellow Sea circulation system, which is controlled by the East Asian winter monsoon(EAWM). Variations in palaeoproductivity represented by marine organic matter and biomarker records are, in general, consistent with the recent EAWM intensity studies, thus, compared with EASM, EAWM may play the main role to control the marine productivity variations in the SYS.
关 键 词:sedimentary organic matter BIOMARKER East Asian MONSOON South Yellow Sea middle HOLOCENE marine productivity
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...