检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘天赐 史泽林[1,3] 刘云鹏[1,3] 张英迪 Liu Tianci;Shi Zelin;Liu Yunpeng;Zhang Yingdi(Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;University of Chinese Academy of Sciences,Beijing 100049,China;Key Laboratory of Opto-Electronic Information Processing,Chinese Academy of Sciences,Shenyang 110016,China)
机构地区:[1]中国科学院沈阳自动化研究所,辽宁沈阳110016 [2]中国科学院大学,北京100049 [3]中国科学院光电信息处理重点实验室,辽宁沈阳110016
出 处:《红外与激光工程》2018年第7期15-21,共7页Infrared and Laser Engineering
基 金:中国科学院重点创新基金(Y6K4250401)
摘 要:近年来,深度学习以其强大的非线性计算能力在目标检测和识别任务中取得了巨大的突破。现有的深度学习网络几乎都是以数据的欧氏结构为前提,而在计算机视觉中许多数据都具有严格的流形结构,如图像集可表示为Grassmann流形。基于数据的流形几何结构来设计深度学习网络,将微分几何理论与深度学习理论相结合,提出一种基于Grassmann流形的深度图像集识别网络。同时在模型训练过程中,使用基于矩阵链式法则的反向传播算法来更新模型,并将权值的优化过程转换为Grassmann流形上的黎曼优化问题。实验结果表明:该方法不仅在结果上识别准确率得到了提高,同时在训练和测试速度上也有一个数量级的提升。In recent years, deep learning techniques have achieved great breakthrough for its powerful non-linear computations in the tasks of target recognition and detection. Existing deep networks were almost designed based on the precondition that the visual data reside on the Euclidean space. However,many data in computer vision have rigorous geometry of manifolds, i.e., image sets can be represented as Grassmann manifolds. The deep network was devised based on the non-Euclidean structure of the manifold-valued data, which combined the differential geometry and deep learning methods theoretically.Furthermore, a deep network for image-set recognition based on the Grassmann manifold was proposed.In the training process, the model was updated by the use of the backpropagation algorithm derived from the matrix chain rule. Learning of the weights can be transformed as the Riemannian optimization problemon the Grassmannian. The experimental results show that this method not only improves the accuracy of recognition, but also accelerates the training and test process in one magnitude.
关 键 词:深度学习 GRASSMANN流形 黎曼优化 图像集识别
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.96.135