狼群优化的二维Otsu快速图像分割算法  被引量:10

A fast two-dimensional Otsu image segmentation algorithm based on wolf pack algorithm optimization

在线阅读下载全文

作  者:曹爽 安建成 CAO Shuang;AN Jian cheng(School of Infomation and Computer Science,Taiyuan University of Technology,Jinzhong 030600,Chin)

机构地区:[1]太原理工大学信息与计算机学院,山西晋中030600

出  处:《计算机工程与科学》2018年第7期1221-1226,共6页Computer Engineering & Science

基  金:山西省国际科技合作项目(2014081018-2)

摘  要:传统二维Otsu算法的阈值选取大都采用穷尽搜索方式,造成算法分割时间较长、实时性差等缺点,影响图像分割效果。为提高算法的运行效率,采用狼群算法来搜索最优阈值,每匹人工狼代表一个可行的二维阈值向量,狼群通过游走、召唤、围攻这三种智能行为的不断迭代以及狼群间的信息交互来获取最佳阈值。仿真结果表明,与标准粒子群优化二维Otsu算法和传统二维Otsu算法相比,狼群优化算法降低了分割时间并提高了图像分割精度。Threshold selection of traditional two-dimensional Otsu algorithm generally depends on the exhaustive search method.However it cannot be applied to real-time systems for its long segmentation time and poor real-time performance which affect the efficiency of image segmentation.In order to reduce the running time of the two-dimensional Otsu algorithm,we use the wolf pack algorithm to find the best threshold vector.Each artificial wolf represents a feasible two-dimensional threshold vector.And the wolves get the best threshold through constant iteration of intelligent behaviors,including scouting behaviors,summoning behaviors and beleaguering behaviors,as well as the communication information among wolves.Simulation results show that compared with the two-dimensional Otsu algorithm with standard PSO optimization and the traditional two-dimensional Otsu algorithm,the proposed algorithm can reduce segmentation time and improve the accuracy of image segmentation.

关 键 词:图像分割 二维OTSU 狼群优化 阈值选取 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象