检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王晨 Wang Chen(CNOOC Huizhou Petrochemical Company,Huizhou,Guangdong 51608)
机构地区:[1]中海油惠州石化有限公司,广东惠州516086
出 处:《石油炼制与化工》2018年第7期95-99,共5页Petroleum Processing and Petrochemicals
摘 要:应用Matlab软件构建了三层BP神经网络,并对中压加氢裂化装置转化率、喷气燃料终馏点和高压换热器壳程压降等方面进行了预测,结果表明:BP神经网络模型准确度受样本数据质量、网络隐藏层节点数目影响较大,对中压加氢裂化工艺参数、产品性质、高换设备状态等均展示出较好预测能力;其中,对加氢裂化转化率预测的准确度最低,相对误差为±(5%~10%);对喷气燃料终馏点预测的准确度较高,相对误差为±(0.15%~2.0%);对高压换热器壳程压降值预测的绝对误差为±0.03 MPa以内,满足换热器状态监测要求。Three-layers BP neural network was established using MATLAB to predict the hydrocracking conversion,kerosene product endpoint and pressure drop of high pressure heat exchanger shell of middle pressure hydrocracking plant.The results revealed that the sample data quality and number of network hidden layer nodes affect the BP network accuracy evidently,while the network could predict the process parameters,product properties,and heat exchanger state primely.The prediction accuracy for hydrocracking conversion is the lowest,the relative error is±(5%—10%);the accuracy of the prediction of jet fuel endpoint is high with a relative error of±(0.15%—2.0%);The absolute error of the pressure drop prediction of the shell side of the heat exchanger is within±0.03 MPa,indicating that the network established satisfies the requirements for heat exchanger condition monitoring.
分 类 号:TE96[石油与天然气工程—石油机械设备] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.213.242