检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张军阳 郭阳[1] ZHANG Junyang;GUO Yang(College of Computer,National University of Defense Technology,Changsha 410073,China)
机构地区:[1]国防科技大学计算机学院,湖南长沙410073
出 处:《国防科技大学学报》2018年第3期69-75,共7页Journal of National University of Defense Technology
基 金:国家重点基础研究发展计划资助项目(2016YFB0200401);国家自然科学基金资助项目(61572025)
摘 要:为了加快卷积神经网络模型的计算速度,便于大规模神经网络模型在嵌入式微处理器中的实现,以FT-matrix2000向量处理器体系结构为研究背景,通过对多核向量处理器体系结构的分析和对卷积神经网络算法的深入研究,提出将规模较小的卷积核数据置于标量存储体,尺寸较大的卷积矩阵置于向量存储体的数据布局方案。针对矩阵卷积中数据难以复用的问题,提出根据卷积核移动步长的不同动态可配置的混洗模式,通过对所取卷积矩阵元素进行不同的移位操作,进而大幅提高卷积矩阵数据的复用率。针对二维矩阵卷积由于存在数据相关性进而难以多核并行的问题,提出将卷积矩阵多核共享,卷积核矩阵多核独享的多核并行方案。设计了卷积核尺寸不变、卷积矩阵规模变化和卷积矩阵尺寸不变、卷积核规模变化的两种计算方式,并在主流CPU、GPU、TI6678、FT-matrix2000平台进行了性能对比与分析。实验结果表明:FT-matrix2000相比CPU最高可加速238倍,相比TI6678可加速21倍,相比GPU可加速663 805倍。In order to accelerate the computational speed of convllution neural network model in embedded microprocessor, the F T- matrix2200 vector processor architecture was tthe analysis of the multi-core vector processor architecture and convolution neural network algorithm , a data layout ssmaller convolution kernel data was placed in a scalar memory bank and a larger convolution matrix was placed in a vector bank. Aimed at the problem that the data in the matrix convolution is hard to reuse ,a dynamic shuffling pattern with different dynamic configurable parameters based on the moving steps of the convolution kernel was proposed , by carrying out different shift operations on the cconvolution matrix data was greatly improved. Aimed at the problem that two-dimensional matrix convolution is difficult to multi-core parallelism due to the existence of data correlation , a multi-core parallel scheme with convolution matrix sharing and convolution kernel matrix multi-core exclusive was proposed. Two computing methods of convolution kernel size unchanged , convolution matrix size changed and convolution matrix size unchanged and convolution kernel size changed were designed , a performance comparison and an aalysis were carried out in mainstream CPU , GPU , TI6678 and FT- matrix2200. The final experimental results show? that compared with the multi-core , the CPU can be accelerated up to 238 times, compared with TI6678 , the speed can be accelerated 21 times , and compared with the high-performance GPU , the speed can accelerate 663805 times.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.224