检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李静 LI Jing(Chongqing Institute of Engineering,Chongqing 400056,China;Chongqing Engineering Technology Research Center of Digital Fihn & Television and New Media,Chongqing 400056,China)
机构地区:[1]重庆工程学院,重庆400056 [2]重庆市数字影视与新媒体工程技术研究中心,重庆400056
出 处:《现代电子技术》2018年第14期166-169,共4页Modern Electronics Technique
基 金:国家自然科学基金资助项目(61272043)~~
摘 要:针对传统遗传算法在数据特征分类过程中容易陷入局部最佳解,分类结果识别率以及准确率较低的问题,提出基于改进遗传算法的数据特征分类方法。采用模拟退火法对遗传算法实施改进,遗传算法经过设置参数、适应度函数的设计、选择策略、交叉策略以及终止条件等过程得到粗糙数据特征分类结果。采用模拟退火算法通过概率突跳特性在温度下降时随机获取目标函数的全局最优解,基于Meteopolis准则提高算法局部寻优效率,通过模拟退火算法对遗传算法的交叉概率与变异概率的选择过程实施改进,获取高精度的数据特征分类结果。实验结果表明,所提方法数据特征分类识别率以及准确率高,分类耗时低。As the traditional genetic algorithms may easily fall into the local optimal solution,and has low recognition rate and accuracy rate of classification results during the process of data feature classification,a method of data feature classification based on improved genetic algorithm is proposed. The simulated annealing method is adopted to improve the genetic algorithm which experiences the processes such as parameter setting,fitness function design,selection strategy,crossover strategy,and termination condition,so as to obtain the rough classification result of data features. The simulated annealing algorithm is adopted to randomly obtain the global optimal solution of the objective function by using the probability abrupt-jump feature when the temperature falls,the local optimizing efficiency of the algorithm is improved based on the Meteopolis criterion,and the selection process for crossover probability and mutation probability of the genetic algorithm is improved by means of the simulated annealing algorithm,so as to obtain high-accurate classification result of data features. The experimental results show that the proposed method has high recognition rate and accuracy rate of data feature classification and low classification time consumption.
关 键 词:改进遗传算法 数据特征分类 模拟退火 局部寻优 Meteopolis准则 概率突跳特性
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222