检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:方璐 李敏 盛校粼 石泽琼 董言治[1] FANG Lu;LI Min;SHENG Xiao-lin;SHI Ze-qiong;DONG Yan-zhi(School of Science and Technology for Opto-Eleetronie Information,Yantai University,Yantai 264005,China;Weifang Business Vocational College,Weifang 262234,China)
机构地区:[1]烟台大学光电信息科学技术学院,山东烟台264005 [2]潍坊工商职业学院,山东潍坊262234
出 处:《烟台大学学报(自然科学与工程版)》2018年第3期254-259,共6页Journal of Yantai University(Natural Science and Engineering Edition)
摘 要:红外偏振成像技术是针对复杂环境中识别目标的重要技术手段,是近年来国内外红外成像技术研究的重点.针对近岸复杂背景下的军用舰船红外偏振图像目标识别问题,提出了一种基于机器学习的分类算法.首先提取图像HOG特征,结合SVM分类器正确检测出舰船目标和渔船目标;然后运用基于灰度的归一化模板匹配算法实现舰船目标的识别.仿真结果表明,该算法具有良好的性能,能够有效地识别红外舰船目标.Infrared polarization imaging technology is an important technical means for target recognition in complex environment and is the focus of infrared imaging research at home and abroad in recent years. In order to solve the problem of infrared polarization image recognition of military ships with complex nearshore background,this paper proposes a classification algorithm based on machine learning. Firstly,the image HOG feature is extracted and the SVM classifier is used to correctly differentiate the images of the military ships and the fishing vessels. Then the gray-based normalized template matching algorithm is used to identify military ship targets. Simulation results show that the algorithm has good performance and can effectively identify the infrared ship targets.
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28