检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈利 CHEN Li(School of Information Science and Technology,Northwest University,Xi' an 710127,China;Department of Basic Courses,Tongchuan Vocational and Technical College,Tongchuan 727031,China)
机构地区:[1]西北大学信息科学与技术学院,陕西西安710127 [2]铜川职业技术学院基础部,陕西铜川727031
出 处:《计算机技术与发展》2018年第6期85-89,共5页Computer Technology and Development
基 金:国家自然科学基金(61373117)
摘 要:随着国内机动车辆数目的不断增加,如何对众多的机动车进行有效管理已成为当前交通管理机构面临的主要问题。利用深度学习技术,通过对车牌定位、车牌字符分割和车牌字符识别技术进行研究,提出了一种车牌识别原型系统方案。在车牌预处理模块,通过图像灰度化处理等一系列操作,抑制了非车牌区域的噪声;在车牌定位模块,提出使用基于深度学习的目标检测方法对车牌进行定位,进行二值化、倾斜校正后使用垂直投影法分割出车牌字符,最后通过改进的Hausdorff距离计算待识别图像与模板之间的相似程度,利用模板匹配的方法识别出车牌字符。实验结果显示,该系统车牌识别准确率高。With increasing of vehicles in domestic,howto effectively manage a large number of motor vehicles has become the main problem in the current traffic management institutions.In this paper,we propose a prototype system of license plate recognition through the research of license plate location,license plate character segmentation and recognition by using deep learning technology.In the plate preprocessing module,a series of operations,such as image grayscale processing,are used for denoising in the non-license plate area.In the plate location module,a target detection method based on deep learning is adopted.After the binarization and tilt correction,license plate characters are segmented by vertical projection.Finally,the similarity between the image and the template is calculated by the improved Hausdorff distance,and the license plate characters are recognized by the template matching method.The experiment shows that the accuracy of license plate recognition system is higher than others.
关 键 词:图像预处理 车牌定位 车牌字符分割 车牌字符识别 HAUSDORFF距离
分 类 号:TP302.1[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15