机构地区:[1]State Key Laboratory of Marine Environmental Science,College of Ocean and Earth Sciences,Xiamen University,Xiamen 361102,China [2]Ocean Dynamics Laboratory,The ThirdInstitute of Oceanography,State OceanieAdministration(SOA),Xiamen 361005,China [3]Department of Atmospheric and Oceanic Science,University of Maryland,College Park 20742,USA
出 处:《Journal of Oceanology and Limnology》2018年第4期1166-1177,共12页海洋湖沼学报(英文)
基 金:Supported by the National Basic Research Program of China(973 Program)(No.2015CB954004);the Chinese Academy of Sciences Strategic Leading Science and Technology Projects(No.XDA1102030104);the National Natural Science Foundation of China(Nos.U1405233,41176031)
摘 要:This paper investigates the response of the thermocline depth(TD) in the South China Sea(SCS) to the El Ni?o-Southern Oscillation(ENSO) events using 51-year(from 1960 to 2010) monthly seawater temperature and surface wind stress data acquired from the Simple Ocean Data Assimilation(SODA), together with heat flux data from the National Centers for Environmental Prediction(NCEP), precipitation data from the National Oceanic and Atmospheric Administration(NOAA) and evaporation data from the Woods Hole Oceanographic Institution(WHOI). It is indicated that the response of the SCS TD to the El Ni?o or La Ni?a events is in opposite phase. On one hand, the spatial-averaged TDs in the SCS(deeper than 200 m) appear as negative and positive anomalies during the mature phase of the El Ni?o and La Ni?a events, respectively. On the other hand, from June of the El Ni?o year to the subsequent April, the spatial patterns of TD in the north and south of 12°N appear as negative and positive anomalies, respectively, but present positive and negative anomalies for the La Ni?a case. However, positive and negative TD anomalies occur almost in the entire SCS in May of the subsequent year of the El Ni?o and La Ni?a events, respectively. It is suggested that the response of the TD in the SCS to the ENSO events is mainly caused by the sea surface buoyancy flux and the wind stress curl.This paper investigates the response of the thermocline depth(TD) in the South China Sea(SCS) to the El Ni?o-Southern Oscillation(ENSO) events using 51-year(from 1960 to 2010) monthly seawater temperature and surface wind stress data acquired from the Simple Ocean Data Assimilation(SODA), together with heat flux data from the National Centers for Environmental Prediction(NCEP), precipitation data from the National Oceanic and Atmospheric Administration(NOAA) and evaporation data from the Woods Hole Oceanographic Institution(WHOI). It is indicated that the response of the SCS TD to the El Ni?o or La Ni?a events is in opposite phase. On one hand, the spatial-averaged TDs in the SCS(deeper than 200 m) appear as negative and positive anomalies during the mature phase of the El Ni?o and La Ni?a events, respectively. On the other hand, from June of the El Ni?o year to the subsequent April, the spatial patterns of TD in the north and south of 12°N appear as negative and positive anomalies, respectively, but present positive and negative anomalies for the La Ni?a case. However, positive and negative TD anomalies occur almost in the entire SCS in May of the subsequent year of the El Ni?o and La Ni?a events, respectively. It is suggested that the response of the TD in the SCS to the ENSO events is mainly caused by the sea surface buoyancy flux and the wind stress curl.
关 键 词:South China Sea (SCS) thermocline depth El Nifio-Southern Oscillation (ENSO) buoyancy flux wind stress curl
分 类 号:P732.6[天文地球—海洋科学] X171.1[环境科学与工程—环境科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...