粒子群优化BP神经网络PID控制注塑机液压系统  被引量:7

Particle swarm optimization BP neural network PID control hydraulic system of injection molding machine

在线阅读下载全文

作  者:欧青立[1] 张磊 邓鹏 雷鹏宇 OU Qingli;ZHANG Lei;DENG Peng;LEI Pengyu(School of Information and Electrical Engineering,Hu' nan University of Sciences and Technology,Xiangtan 411201,China)

机构地区:[1]湖南科技大学信息与电气工程学院,湖南湘潭411201

出  处:《应用科技》2018年第4期50-55,共6页Applied Science and Technology

基  金:国家自然科学基金项目(11272119);湖南省自然科学基金项目(14JJ2099)

摘  要:注塑机液压系统是一个时变、非线性和高耦合的复杂系统,传统PID控制参数不易整定,超调量大,对注塑机液压系统控制效果欠佳,现提出一种粒子群优化BP神经网络算法改良PID控制。BP神经网络算法存在收敛速度慢和容易陷入局部最小值的缺陷,利用粒子群算法的全局最优和收敛速度快的特性改良BP神经网络,然后利用粒子群优化BP神经网络对PID的3个参数进行在线调整。仿真结果表明,经过粒子群优化后的BP神经网络对PID3个参数的整定效果要比BP网络要好,同时粒子群优化BP神经网络PID控制效果明显优于传统PID控制,可以有效提高注塑机液压系统的精度和响应速度,优化注塑过程。The hydraulic system of injection molding machine is a complex system with time-varying, non-linear and high coupling characteristics. It is not easy to tune traditional PID control parameters, the overshoot is large and the control effect on the hydraulic system of injection molding machine is not good, therefore, this paper proposes a particle swarm optimized BP neural network algorithm improved PID control. BP neural network algorithm has the defects of slow convergence rate and easily falling into local minimum. Use the characteristics of global optimization and fast convergence speed of particle swarm optimization algorithm to improve the BP neural network, then adjust those three parameters of PID by the particle swarm optimized BP neural network on line. Simulation results show that BP neural network after particle swarm optimization is better than BP network in tuning those three parameters of PID, and the effect of PID control of the particle swarm optimized BP neural network is obviously better than traditional PID control, which can effectively increase the accuracy and response speed of the hydraulic pressure system of injection molding machine, and optimize the injection molding process.

关 键 词:注塑机控制 液压系统 粒子群优化算法 神经网络 PID控制 参数整定 伺服系统 注塑工艺过程 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象