计算主义形式系统难题:基于哥德尔不完全性定理的讨论  

Computationalism Problem of Formal System: a Discussion Based on Gdel's Incompleteness Theorem

在线阅读下载全文

作  者:赵小军 ZHAO Xiao-jun(College of History and Political Science,Guizhou Normal University, Guiyang 550001,Chin)

机构地区:[1]贵州师范大学历史与政治学院,贵州贵阳550001

出  处:《洛阳师范学院学报》2018年第7期12-19,共8页Journal of Luoyang Normal University

基  金:贵州师范大学2016年博士科研启动项目(12004-0516018)

摘  要:通过分析基于哥德尔不完全性定理的挑战,认为其对计算主义的批判是不成立的。虽然哥德尔不完全性定理确实可以打击形式系统,但却并不能说明它驳倒了计算主义,因为计算系统不是纯粹形式系统,而是由形式系统与非形式系统共同构成的完整系统,仅从形式系统来理解计算系统是偏狭的。卢卡斯等人对计算主义的反对与其论证背后的哲学预设"人心至上论"有关,从这个预设出发,自然会得出不利于计算主义的结论,而如果给予计算机和人以平等地位的话,并不能得出人心优于机器的结论。Based on analysis,it is concluded that the challenge from Godel's incompleteness theorem against computationalism is not valid. Although Godel's incomplete theorem is proved forceful challenge against formal sys-tem ,it does not follow that it can successfully confute computationalism since the computation system is not a sole formal system. It is provincial to view the computational system as formal, because it is built up of formal systems at lower level and informal systems at higher level. Lucas and others' arguments against computationalism are based on the philosophical premise of anthropocentrism from which naturally arises the view that is unfavorable to computationalism. When computer and human are treated equally, it will be found that human mind is not necessa-rily superior to machines.

关 键 词:形式系统 计算主义 哥德尔不完全性定理 

分 类 号:N031[自然科学总论—科学技术哲学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象