检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘坤[1] 苏彤 王典 Liu Kun;Su Tong;Wang Dian(College of Information Engineering,Shanghai Maritime University,Shanghai 200135,China)
出 处:《激光与光电子学进展》2018年第8期387-394,共8页Laser & Optoelectronics Progress
基 金:国家自然科学基金(61271446);航空科学基金(2013ZC15005)
摘 要:提出了一种基于模糊不变卷积神经网络(BICNN)模型的目标识别方法。与传统卷积神经网络(CNN)模型不同,BICNN引入了一种新的模糊不变层。BICNN通过增加模糊不变约束项及正则化来优化模糊不变目标函数并进行训练;通过减小模糊不变目标函数值,使得训练样本在模糊前后的特征映射一致,最终实现模糊不变性。测试结果表明,BICNN解决了模糊造成的识别率低的问题,增大了运动模糊图像的识别率。A method of target recognition based on the blur-invariant convolutional neural network(BICNN)model is proposed.The BICNN model introduces a new blur-invariant layer,which is different from the traditional convolutional neural network(CNN)models.BICNN is trained by the adding of the blur-invariant constraint term and the regularization to optimize a blur-invariant objective function.The value of the fuzzy invariant objective function is reduced to make the training samples consistent with the feature maps before and after the blurring,and thus the blur invariance is achieved finally.The test results show that BICNN can solve the problem of a low recognition rate caused by blur and improve the recognition rate of the motion blurred images.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229