基于LASSO算法的门诊医疗服务改进研究  被引量:2

Improvement of Outpatient Medical Service Based on LASSO Algorithm

在线阅读下载全文

作  者:郝一炜 万钢[1] 李晶[1] HAO Yi-wei;WAN Gang;LI Jing(Beijing Ditan Hospital,Capital Medical University,Beijing,100015,China)

机构地区:[1]首都医科大学附属北京地坛医院,北京100015 [2]中国人民大学统计学院,北京100872

出  处:《中国医院管理》2018年第9期56-58,共3页Chinese Hospital Management

基  金:首都医科大学附属北京地坛医院萌芽项目(DT-MY201616)

摘  要:目的门诊患者满意度影响因素较多,改进门诊服务的工作中难以有针对性地进行整改。针对这一问题,借助统计学方法工具提出解决方案。方法基于北京某医院满意度调查数据,通过R语言编程进行机器学习,利用LASSO算法筛选对门诊满意度影响较大的因素,结合这些因素的满意度评分,确定门诊服务改进方向。结果 LASSO算法从问卷量表中的15个因素中提取出9个门诊满意度高影响因素,其中候诊时间和挂号缴费服务的满意度较低,应当着重予以整改。结论 LASSO算法能够挖掘提升患者满意度的关键因素,为管理者提供科学的政策指导。Objective To improve outpatient service by selecting several key factors about outpatients' satisfaction.Methods Conducting the machine learning in R software based on the outpatients' satisfaction survey data of a hospital in Beijing,selecting the key factors by LASSO algorithm. Combining with the importance and satisfaction of those factors,focusing on the direction of outpatient service improvement. Results 9 of 15 factors are selected from the questionnaire scale by LASSO,in which waiting time and registration and payment service should be improved in the future. Conclusion LASSO algorithm can select those key factors about outpatients' satisfaction which helps the administrators to make the outpatient service improvement polices.

关 键 词:门诊服务 患者满意度 改进服务 最小绝对值压缩选择模型 

分 类 号:R197.323.2[医药卫生—卫生事业管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象