检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李忠明[1] LI Zhong-ming(Liaoning Petrochemical Vocational and Technical Colleg)
机构地区:[1]辽宁石化职业技术学院
出 处:《化工自动化及仪表》2018年第8期607-610,639,共5页Control and Instruments in Chemical Industry
摘 要:结合BP神经网络和灰色理论两种单项预测模型算法,提出组合优化预测模型算法,实现对变压器油中溶解气体浓度更为精确的预测。该组合模型算法机理是根据预测误差平方和最小化的原则,首先计算各单项预测模型的权重,然后将各单项模型的权重进行加权综合计算,建立组合最优预测模型。以变压器中溶解的H_2为例验证了该组合算法汲取了两种单项算法的优点,不仅使各单项预测算法的预报误差降低,也有效提高了预测模型的预报性能。Having forecasting model algorithm of BP neural network and grey theory based to propose a prediction model of combinatorial optimization was implemented to realize more accurate prediction of the dissolved gas concentration in transformer oil. The mechanism of this combined forecasting algorithm is to have the square sum of prediction errors minimized to calculate the weight of each prediction model,and then to carry out weighted calculation of the weight of all prediction models so as to establish an optimal combined forecasting model. Taking hydrogen in transformer as an example,the advantages of this optimal algorithm were verified to indicate that this optimal combined algorithm can reduce prediction error of each individual prediction algorithm and it effectively improves the forecasting performance.
关 键 词:组合预测模型 变压器油 溶解气 浓度 BP神经网络 灰色理论 预报误差 预报性能
分 类 号:TH83[机械工程—仪器科学与技术] TM411[机械工程—精密仪器及机械]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80