运用最小二乘模型平均法预测外汇实际波动率(英文)  被引量:5

Forecasting Foreign Exchange Realized Volatility:A Least Square Model Averaging Approach

在线阅读下载全文

作  者:邱越 谢天 QIU Yue;XIE Tian(School of Economics,Xiamen University,Xiamen 361005;Wang Yanan Institute for Studies in Economics,Xiamen University,Xiamen 361005)

机构地区:[1]厦门大学经济学院,厦门361005 [2]厦门大学王亚南经济研究院,厦门361005

出  处:《系统科学与数学》2018年第6期725-744,共20页Journal of Systems Science and Mathematical Sciences

基  金:国家自然科学基金资助项目(71701175);国家教育部科学基金资助项目(17YJC790174);福建省自然科学基金计划资助项目(2018J01116);福建省中青年教师教育科研项目(JAS170018);中央高校基本科研业务费专项资金资助(20720171076,20720181050,20720171002)资助课题

摘  要:金融风险管理的重中之重在于对金融资产实际波动率的预测.因为汇率市场的复杂性以及多变性,汇率波动率数据具有极强的异方差性.文章着重研究在异方差环境下,如何正确地使用最小二乘模型平均法来提高实际波动率的预测精度.文章以异质自回归(HAR)模型为基础,以不同的滞后项构建出多个候选模型.最终模型是所有候选模型的加权平均.而通过为每个候选模型配给不同的权重,模型平均法可以灵活动态地调节最终模型的结构.文章首先证明了所提出的最小二乘模型平均法具有渐近最优性.在随后大量实证中,发现所提出的方法在汇率实际波动率的预测精度方面优于很多同类方法.Modeling and predicting the volatility of financial assets is an interesting issue in risk management. Recently a new approach to modeling volatility dynamics has relied on improved measures of ex post volatility composed from high-frequency daily data. This paper investigates least square model averaging approach under heteroskedasticity to forecast realized volatility. Candidate models are constructed from taking a full permutation of all of the possible lag terms of the conventional HAR model. By assigning differential estimated model weights to each candidate model, we achieve the effect of a flexible lag specification of the HAR model through model averaging. Furthermore, we prove that the proposed estimator is asymptotically optimal in the sense of achieving the lowest possible mean squared forecast error. Applied to exchange rate volatility over several forecast horizons, the proposed least square model averaging under heteroskedasticity provides very competitive forecasts, compared to the HAR model and the model averaging method assuming homoskedasticity.

关 键 词:模型平均 模型筛选 异质自回归模型 渐进最优 汇率波动率 

分 类 号:F832.6[经济管理—金融学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象