一种求解大规模问题的自学习协同粒子群算法  被引量:5

AN SELF-LEARNING COOPERATIVE PARTICLE SWARM OPTIMIZATION ALGORITHM FOR SOLVING LARGE SCALE PROBLEMS

在线阅读下载全文

作  者:肖根福 刘欢[2] 李东洋[3] 欧阳春娟[2] XIAO Gen-fu;LIU Huan;LI Dong-yang;OUYANG Chun-juan(School of Mechanical and Electrical Engineering,Jinggangshan University,Ji'an,Jiangxi 343009,China;School of Electronics and Information Engineering,Jinggangshan University,Ji'an,Jiangxi 343009,China;School of Electronics and Information Engineering,Tongji University,Shanghai 201804,China)

机构地区:[1]井冈山大学机电工程学院,江西吉安343009 [2]井冈山大学电子与信息工程学院,江西吉安343009 [3]同济大学电子与信息工程学院,上海201804

出  处:《井冈山大学学报(自然科学版)》2018年第3期32-37,共6页Journal of Jinggangshan University (Natural Science)

基  金:国家自然科学基金项目(61462046);江西省自然科学基金项目(2016BAB202049);江西省教育厅科技项目(GJJ160741;GJJ170633;GJJ170632);江西省艺术规划项目(YG2016250;YG2017381)

摘  要:随着工程技术要求的提高,许多实际优化问题从低维问题发展成高维的大规模优化问题,自然计算算法在面对该类问题时容易陷入局部最优,而协同粒子群算法是解决大规模优化问题的重要手段之一。本文将子种群划分自学习策略和惯性权重自适应策略引入到协同粒子群算法中,增强了算法的自学习能力,提高了算法的全局寻优能力。实验结果表明,所提算法的性能超过了传统协同粒子群等算法,具有求解大规模问题的较大潜力。With the improvement of engineering requirements, many practical optimization problems have been developed from low dimensional problems to large-scale optimization problems. The natural computing algorithm is prone to fall into the local optimal in the face of this kind of problem. Cooperative particle swarm optimization(CPSO) is one of the important means to solve large-scale optimization problems. In this paper, sub population partition self-learning strategy and inertia weight self-adaptive strategy are introduced into cooperative particle swarm optimization algorithm, which enhances the self-learning ability of the algorithm and improves the global optimization ability of the algorithm. The experimental results show that the performance of the proposed algorithm exceeds the traditional cooperative particle swarm optimization algorithms, and has great potential for solving large-scale problems.

关 键 词:大规模优化 协同粒子群算法 学习自动机 自学习 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象