检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈石涛[1] 杨龙兴[1] 丁力[1] 梁栋[1] CHEN Shitao;YANG Longxing;DING Li;LIANG Dong(Colledge of Mechanics,Jiangsu University of Technology,Changzhou 213001,China)
机构地区:[1]江苏理工学院机械学院
出 处:《热加工工艺》2018年第15期161-164,共4页Hot Working Technology
基 金:江苏省基础研究计划(自然科学基金)资助项目(BK20170135)
摘 要:随着图像技术在自动化焊接中的应用,高效地识别和提取出焊缝轨迹,成为图像跟踪自动焊接的关键。本文提出了一种基于改进SUSAN算法的焊缝边缘检测方法。首先对采集到的焊缝图像进行灰度化处理,再通过SUSAN算法进行焊缝的边缘检测,并将SUSAN算法中的灰度差阈值由人为选取改进为一种自适应选取的方法。理论分析和实验结果表明,该算法比其他边缘检测算子抗噪能力强,可以更加高效地提取出焊缝信息。With the application of image technology in automatic welding, it is the key to realize the automatic welding of image tracking to efficiently identify and extract the weld track. A weld edge detection method based on improved SUSAN algorithm was presented. Firstly, the collected welding images were processed by grayscale, the weld edge was detected through SUSAN algorithm, and the gray level difference threshold in SUSAN algorithm was improved from human selection to an adaptive selection method. The theoretical analysis and experimental results show that the algorithm has stronger anti-noise property and can extract the weld information more efficiently than other edge detection algorithms.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117