检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马圆圆 MA Yuan-yuan(School of Mathematical Science,Chongqing Normal University,Chongqing 401331,China)
出 处:《重庆工商大学学报(自然科学版)》2018年第5期56-59,共4页Journal of Chongqing Technology and Business University:Natural Science Edition
基 金:重庆市基础科学与前沿技术研究重点项目(CSTC2015JCYJBX0029)
摘 要:针对含有不等式约束、等式约束的多目标优化问题,其中目标函数和约束函数都是局部Lipschitz的,提出广义Stampacchia拟向量变分不等式的定义,以此作为工具去刻画近似拟有效解或近似弱拟有效解.利用两类新定义的广义凸函数,在合适的约束品性条件下,Kuhn-Tucker向量临界点,多目标优化的解与广义Stampacchia拟向量变分不等式在弱和强形式下的解之间的关系将会得到证明.A multiobjective problem with a feasible set defined by inequality, equality and set constraints is considered, where the objective and constraint functions are locally Lipschitz. A generalized Stampacchia quasi vector variational inequality is formulated as a tool to characterize approximate quasi- or weak quasi-efficient points. By using two new classes of generalized convexity functions, under suitable constraint qualifications, the relations between Kuhn-Tucker vector critical points, solutions to the multiobjective problem and solutions to the generalized Stampacchia vector variational inequality in both weak and strong forms are proved.
关 键 词:多目标问题 向量临界点 约束品性 拟向量变分不等式
分 类 号:O224[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.91