检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Valerii IVANOV Alexey IVANOV
机构地区:[1]Department of Applied Mathematics and Computer Science,Tula State University
出 处:《Acta Mathematica Sinica,English Series》2018年第10期1563-1577,共15页数学学报(英文版)
基 金:Supported by the Russian Foundation for Basic Research(Grant No.16-01-00308)
摘 要:We study Jackson's inequality between the best approximation of a function f∈ L2(R^3) by entire functions of exponential spherical type and its generalized modulus of continuity. We prove Jackson's inequality with the exact constant and the optimal argument in the modulus of continuity. In particular, Jackson's inequality with the optimal parameters is obtained for classical modulus of continuity of order r and Thue-Morse modulus of continuity of order r∈ N. These results are based on the solution of the generalized Logan problem for entire functions of exponential type. For it we construct a new quadrature formulas for entire functions of exponential type.We study Jackson's inequality between the best approximation of a function f∈ L2(R^3) by entire functions of exponential spherical type and its generalized modulus of continuity. We prove Jackson's inequality with the exact constant and the optimal argument in the modulus of continuity. In particular, Jackson's inequality with the optimal parameters is obtained for classical modulus of continuity of order r and Thue-Morse modulus of continuity of order r∈ N. These results are based on the solution of the generalized Logan problem for entire functions of exponential type. For it we construct a new quadrature formulas for entire functions of exponential type.
关 键 词:Best approximation generalized modulus of continuity Jackson's inequality optimal argument Logan's problem quadrature formula
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28