检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘冬[1,2] 黄建荧[3] 王昕 黄一冲 熊祺 肖志怀 LIU Dong;HUANG Jianying;WANG Xin;HUANG Yichong;XIONG Qi;XIAO Zhihuai(Key Laboratory of Accoutrement Technique in Fluid Machinery & Power Engineering,Hubei Province,Wuhan University,Wuhan 430072,China;School of Power and Mechanical Engineering,Wuhan University,Wuhan 430072,China;Fujian Shuikou Power Generation Group Co.,Ltd.,Fuzhou 350004,China)
机构地区:[1]武汉大学流体机械与动力工程装备技术湖北省重点实验室,湖北武汉430072 [2]武汉大学动力与机械学院,湖北武汉430072 [3]福建水口发电集团有限公司,福建福州350004
出 处:《水利学报》2018年第8期966-974,共9页Journal of Hydraulic Engineering
基 金:国家自然科学基金项目(51379160)
摘 要:建立水轮机数学模型是研究机组稳定性,优化机组运行的基础。工程实际中,对水轮机小扰动工况的研究多采用分段线性化模型,需要求取不同工况下水轮机的传递系数。然而,传统的求取方法计算量大,得到的传递系数数量有限且在轻载工况时误差较大。本文基于外特性法和神经网络求导,研究了轴流转桨式水轮机传递系数的计算方法。利用模型综合特性曲线、飞逸曲线以及边界条件,获取水轮机模型的原始数据,训练并得到反映水轮机流量特性和力矩特性的神经网络。对包含神经网络的数学表达式进行求导,推导传递系数的计算式,它是工况点的函数。最后,对比了该方法和曲线拟合法在一些工况点处求得的传递系数,分析了各自的特点。结果表明,本文提出的基于神经网络求导的水轮机传递系数求取方法精度较高,减少了计算量,且有利于全面的认识传递系数随工况的变化情况。Building the mathematic model of hydro-turbine is basic for the research on its stability and optimal operation. In engineering practices,piecewise-linear models are usually used to analyze the little disturbance of hydro-turbine,which requires the transfer coefficients in different working states. However,conventional methods have the shortcomings of more computing burden,limited number of transfer coefficients and larger errors in lightly loaded conditions. In this paper,a computation method of transfer coefficientsfor hydro-turbine is proposed based on characteristic curves and the derivation of neural networks. The original data of hydro-turbine model is acquired using model synthesis characteristic curves, runaway curves and boundary conditions,and the neural network is trained and obtained reflecting the characteristics of discharge and torque of hydro-turbine. The derivative of the mathematical expression that contains the neural network is computed to deduce the calculation formula of transfer coefficients,which should be the function of working states. Finally,the transfer coefficients calculated respectively by the proposed method andcurve fitting are compared at some working states,and the characteristics of them are analyzed. The results indicate that the proposed method based on the derivative of neural networks has a higher accuracy,reduces the computation and is conducive to an overall recognition on the change of transfer coefficients along with working states.
分 类 号:TK73[交通运输工程—轮机工程] TV73[动力工程及工程热物理—流体机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3