检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆第二师范学院,重庆400065 [2]重庆车辆检测研究院,重庆401122 [3]重庆理工大学,重庆400054
出 处:《半导体光电》2018年第4期591-594,共4页Semiconductor Optoelectronics
基 金:国家自然科学基金项目(51276209)
摘 要:茶多酚是茶叶中的主要成分,其含量约占30%左右,决定着茶汤的味道、颜色等。利用近红外光谱法对茶多酚含量进行快速检测,在茶叶品质的快速识别中具有极高的实用价值。基于光谱技术结合化学计量学方法,对不同茶叶的不同成分进行了研究,结果表明:茶叶中的主要成分茶多酚含量与近红外波段(1 800~2 500nm)的吸光度存在近似的线性关系,在此基础上建立拟合曲线,得出了不同拟合曲线的相关系数和校正均方根误差;采用近红外光法结合偏最小二乘法在1 872nm建立了茶多酚含量预测模型,其相关系数达到0.937 8,均方根误差为0.008 015。Tea polyphenol is the main component in tea.The content of tea polyphenols accounts for about 30%,which determines the taste and color of tea soup.Therefore,how to use the NIRS to quickly detect the content of tea polyphenols has a very high practical value in the rapid identification of tea quality. On the basis of the combination between NIRS and chemometrics methods,this paper analyzes the components of different teas.The tests indicate that,there is an approximately linear relationship between tea polyphenol content and the absorbance in the near-infrared waveband(1 800~2 500 nm).Based on this result,a fitting curve was established,and the correlation coefficient and the correction root mean square error of different fitting curves were obtained. The tea polyphenol content prediction model was established using near-infrared light method and partial least squares method at 1 872 nm.The correlation coefficient reached 0.937 8,the RMSE is 0.008 015.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222