检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孔航 Kong Hang(Institute of Marxism,Nanjing University of Science & Technology,Nanjing 210094,China)
机构地区:[1]南京理工大学马克思主义学院
出 处:《统计与决策》2018年第17期34-39,共6页Statistics & Decision
基 金:国家社会科学基金青年项目(17CJL035)
摘 要:文章基于贝叶斯法对非参数函数进行分位数处理,研究函数在每个分位点的基本特征,构建了一种新的基于贝叶斯法的非参数分位数回归模型,并与传统非参数回归模型进行算例比较。新模型具有以下优点:第一,分位点差异性。该模型有别于传统的非参数模型,可以对每个分位点的差异进行分析。第二,高效性。基于贝叶斯的基本方法对非参数函数进行分位数拓展研究,可以大大提高运算效率。第三,可靠性。Gibbs抽样校准结果较为理想、蒙特卡洛模拟的精度较高。Based on the Bayesian method,this paper deals with the quantile processing of nonparametric functions,analyzes the basic features of the function at each quantile, constructs a new nonparametric quantile regression model based on Bayesian method,and compares the estimation results with the traditional nonparametric regression model. The new model has the following advantages: Firstly, quantile difference. This model, different from the traditional non-parametric model, can analyze the differences in each quantile. Second, high efficiency. Based on the Bayesian basic method, the quantile expansion of non-parametric functions can be studied, with efficiency greatly improved. The third is its reliability. The Gibbs sample calibration results are ideal and Monte Carlo simulations have higher accuracy.
关 键 词:非参数回归模型 分位数 Gibbs抽样算法 联合密度函数
分 类 号:O21[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171