检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙太祥[1] 曾凡平 秦斌[1] 粟光旺 Taixiang Sun;Fanping Zeng;Bin Qin;Guangwang Su
机构地区:[1]广西财经学院信息与统计学院,南宁530003
出 处:《中国科学:数学》2018年第9期1131-1142,共12页Scientia Sinica:Mathematica
基 金:国家自然科学基金(批准号:11761011);广西自然科学基金(批准号:2016GXNSFAA380286和2016GXNSFBA380235);广西高校中青年教师基础能力提升(批准号:2017KY0598);广西财经学院科学基金(批准号:2017QNA04)资助项目
摘 要:设D是广义树(即具有有限个分支点的树突(dendrite)),f是D上的连续自映射.用P(f)、R(f)、SA(f)、Γ(f)、UΓ(f)、ω(x,f)和?(f)分别表示f的周期点集、回归点集、特殊α-极限点集、γ-极限点集、单侧γ-极限点集、x的ω-极限集和非游荡集.对任意A?D,记ω(A)=∪_(x∈A)ω(x,f).对任意的自然数n≥2,记ω~n(f)=ω(ω^(n-1)(f)),其中ω(f)=∪_(x∈D)ω(x,f).本文证明:对任意的正整数n,有ω^(n+2)(f)=ω~2(f)=ω(?(f))=ω(SA(f))=ω(Γ(f))=ω(P(f)∪(∪_(n=0)~∞f^n(UΓ(f))))=ω(P(f))=ω(R(f)∪UΓ(f))=P(f)∪(∪_(n=0)~∞f^n(UΓ(f)))?P(f).此外,本文还构造了一个只有一个分支点的广义树D和D上的一个连续自映射f,使得{ω(x,f):x∈D}在Hausdorff度量下不是闭的.Let D be a general tree(i.e., a dendrite with the number of branch points being finite) and f: D→D be continuous. Denote by P(f), R(f), SA(f), Γ(f), UГ(f), ω(x,f) and Ω(f) the set of periodic points, the set of recurrent points, the set of special α-limit points, the set of γ-limit points, the set of unilateral γ-limit points,the set of ω-limit points of x and the set of non-wandering points of f, respectively. Let ω(f) =∪x∈D ω(x,f)and ω(A) = ∪x∈Aω(x, f) for any A?D and ωn(f) = ω(ωn-1(f)) for all n ≥ 2. In this paper, we show that for any positive integer n,ωn+2(f) = ω2(f) =ω(Ω(f))=ω(SA(f))=ω(Г(f))=ω(P(f)∪(Un=0∞ fn(UΓ(f))))=ω(P(f)) =ω(R(f) ∪Uг(f))=P(f)∪(Un=0∞ fn(UГ(f)))?P(f). Besides, we construct a general tree D with a branch point and a continuous map f: D → D such that {ω(x,f) : x∈D} is not closed with Hausdorff metric.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.131.95.159