基于随机共振与粒子群优化的毫米波辐射计信号去噪算法  

Millimeter Wave Radiometer Signal De-noising Based on Stochastic Resonance and Particle Swarm Optimization Algorithm

在线阅读下载全文

作  者:韩凌云 李跃华[1] 陈建飞[3] 张翼龙 HAN Ling-yun;LI Yuehua;CHEN Jian-fei;ZHANG Yi-long(School of Electronic Engineering and Optoelectronic Technology,Nanjing University of Science and Technology,Nanjing 210094,China;School of Physics and Electronic Information,Anhui Normal University,Wuhu 241002,China;School of Electronic and Optoelectronic Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)

机构地区:[1]南京理工大学电子工程与光电技术学院,江苏南京210094 [2]安徽师范大学物理与电子信息学院,安徽芜湖241002 [3]南京邮电大学电子与光学工程学院,江苏南京210003

出  处:《安徽师范大学学报(自然科学版)》2018年第4期335-340,共6页Journal of Anhui Normal University(Natural Science)

基  金:国家自然科学基金项目(161601237);江苏省自然科学基金项目(KB20160901);江苏省高校自然科学研究面上项目(16KJB420001)

摘  要:毫米波辐射计由于具有全天候工作、识别金属目标能力强、隐蔽性好等特点,具有广阔的应用前景。然而由于大气干扰、辐射计本身抖动等影响,毫米波辐射计的输出信号隐没在强噪声背景下。传统的微弱信号检测方法在强噪声背景下信噪比改善性能并不理想,本文提出了一种基于可变惯性权重和信息共享的粒子群优化的自适应随机共振算法的毫米波辐射计信号去噪算法。实验结果表明,本文方法对噪声的变化有更好的鲁棒性,尤其在强噪声背景下相比于传统去噪算法,能更好地改善信号的输出质量。The millimeter wave radiometer has a wide application prospect because of its all-weather work,strong energy and good concealment.However,output signals of the millimeter wave radiometer are affected by the atmospheric interference and the radiometer dithering and are hidden in the strong noise background.Traditional method of weak signal detection is not ideal for improving the performance of signal to noise ratio in strong noise background.A stochastic resonance algorithm based on variable inertia weight and information sharing particle swarm optimization algorithm is proposed for millimeter wave radiometer signal de-noising.The experimental results show that the optimal system parameters can be quickly and stably obtained,and the proposed algorithm is more robust to noise variations,especially in the strong noise background compared with the traditional de-noising algorithm,which can better improve the output quality of the signal.

关 键 词:毫米波辐射计 随机共振 粒子群算法 

分 类 号:TN001[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象