马尾松毛虫幼虫发生高峰期的三种预测模型  被引量:10

The three models for forecasting the peak larval period of Dendrolimus punctatus

在线阅读下载全文

作  者:余燕 王振兴[1] 李尚[2] 周夏芝[2] 毕守东[1] 方国飞[3] 张国庆[4] 邹运鼎[2] 张桢 宋玉双[3] YU Yan;WANG Zhen-Xing;LI Shang;ZHOU Xia-Zhi;BI Shou-Dong;FANG Guo-Fei;ZHANG Guo-Qing;ZOU Yun-Ding;ZHANG Zhen;SONG Yu-Shuang(School of Science,Anhui Agricultural University,Hefei 230036,China;School of Forestry and Landscape Architecture Anhui Agricultural University,Heifei 230036,China;The Forest Disease and Pests Prevention and Control Station,Shenyang 110034,China;The Forest of Qianshan County,Anhui province,Qianshan 246300,China)

机构地区:[1]安徽农业大学理学院,合肥230036 [2]安徽农业大学林学与园林学院,合肥230036 [3]国家林业局森林病虫害防治总站,沈阳110034 [4]安徽省潜山县林业局,潜山246300

出  处:《应用昆虫学报》2018年第4期748-758,共11页Chinese Journal of Applied Entomology

基  金:国家林业公益性行业科研专项(201404410)

摘  要:【目的】为了科学确定马尾松毛虫Dendrolimus punctatus防治适期,提高防治效果。【方法】采用平稳时间序列法、马尔科夫链法和BP神经网络法研究安徽省潜山县1983-2014年马尾松毛虫幼虫发生的高峰期预测模型,并用2015年和2016年发生资料进行验证。【结果】显示:平稳时间序列法、马尔科夫链法、BP神经网络法模型预测2015年和2016年1代幼虫高峰期均为6月5日,2代高峰期均为9月6日,两年的1、2代实际发生期也是6月5日和9月6日,预测值与实际值完全一致。平稳时间序列法预测1代幼虫高峰期结果,若以大于2 d为误差标准,则1983-2014年的历史符合率为96.77%;若以小于和等于1 d为误差标准,历史符合率为74.19%,2代幼虫高峰的预测结果的历史符合率与1代相同。BP神经网络法预测结果若以1 d为误差标准,1983-2014年则1、2代预测结果的历史符合率均为100%。【结论】在3种方法中,平稳时间序列法适用于害虫发生过程符合平稳时间序列的情况;马尔科夫链法预报量的分级标准科学与否直接影响预测结果的准确性;BP神经网络法可用于自变量与预报量非线性关系的研究,是一种比较理想的预报方法。[Objectives] To scientifically determine the optimum period for controlling Dendrolimus punctatus, and thereby improve the effectiveness of current control methods. [Methods] Stationary time series, BP neural network and Markov Chain analysis were used to develop models predicting the timing of peak larval abundance from 1983 to 2016 in Qianshan County Anhui Province. The predictions of these models were verified in 2015 and 2016. [Results] The peak of the first larval generation was predicted to occur on June 5 and that of the second generation on September 6. The predicted dates were exactly the same as the actual dates in 2015 and 2016. The stationary time sequence method predicted the timing of peak of larval abundance with 96.77% accuracy from 1983 to 2014 if the error criterion was 2 days. If the error criterion is less ≤1, the accuracy was 74.19%. The accuracy of the prediction of the second generation larval peak was the same as that for the first generation. For the BP neural network, if the error criterion was one day, the accuracy of the predicted outcome was 100% from 1983 to 2014. [Conclusion] The stationary time sequence method was applicable to stable time series for predicting peak larval abundance whereas the Markov Chain was directly influenced by the accuracy of the prediction results. The BP Neural Network method can be used to determine nonlinear relationships between independent variables and predicted larval abundance, which is an ideal prediction method.

关 键 词:马尾松毛虫幼虫高峰期 平稳时间序列法 BP神经网络法 马尔科夫链法 

分 类 号:S763.421[农业科学—森林保护学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象